பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-8 ab=4\left(-5\right)=-20
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 4x^{2}+ax+bx-5-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-20 2,-10 4,-5
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -20 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-20=-19 2-10=-8 4-5=-1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-10 b=2
-8 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(4x^{2}-10x\right)+\left(2x-5\right)
4x^{2}-8x-5 என்பதை \left(4x^{2}-10x\right)+\left(2x-5\right) என மீண்டும் எழுதவும்.
2x\left(2x-5\right)+2x-5
4x^{2}-10x-இல் 2x ஐக் காரணிப்படுத்தவும்.
\left(2x-5\right)\left(2x+1\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{5}{2} x=-\frac{1}{2}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x-5=0 மற்றும் 2x+1=0-ஐத் தீர்க்கவும்.
4x^{2}-8x-5=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 4, b-க்குப் பதிலாக -8 மற்றும் c-க்குப் பதிலாக -5-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-5\right)}}{2\times 4}
-8-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-5\right)}}{2\times 4}
4-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 4}
-5-ஐ -16 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 4}
80-க்கு 64-ஐக் கூட்டவும்.
x=\frac{-\left(-8\right)±12}{2\times 4}
144-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8±12}{2\times 4}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{8±12}{8}
4-ஐ 2 முறை பெருக்கவும்.
x=\frac{20}{8}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{8±12}{8}-ஐத் தீர்க்கவும். 12-க்கு 8-ஐக் கூட்டவும்.
x=\frac{5}{2}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{20}{8}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{4}{8}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{8±12}{8}-ஐத் தீர்க்கவும். 8–இலிருந்து 12–ஐக் கழிக்கவும்.
x=-\frac{1}{2}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-4}{8}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{5}{2} x=-\frac{1}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
4x^{2}-8x-5=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
4x^{2}-8x-5-\left(-5\right)=-\left(-5\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 5-ஐக் கூட்டவும்.
4x^{2}-8x=-\left(-5\right)
-5-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
4x^{2}-8x=5
0–இலிருந்து -5–ஐக் கழிக்கவும்.
\frac{4x^{2}-8x}{4}=\frac{5}{4}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{8}{4}\right)x=\frac{5}{4}
4-ஆல் வகுத்தல் 4-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-2x=\frac{5}{4}
-8-ஐ 4-ஆல் வகுக்கவும்.
x^{2}-2x+1=\frac{5}{4}+1
-1-ஐப் பெற, x உறுப்பின் ஈவான -2-ஐ 2-ஆல் வகுக்கவும். பிறகு -1-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-2x+1=\frac{9}{4}
1-க்கு \frac{5}{4}-ஐக் கூட்டவும்.
\left(x-1\right)^{2}=\frac{9}{4}
காரணி x^{2}-2x+1. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-1=\frac{3}{2} x-1=-\frac{3}{2}
எளிமையாக்கவும்.
x=\frac{5}{2} x=-\frac{1}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் 1-ஐக் கூட்டவும்.