பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x^{2}+3x=2\left(1-x\right)
3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{2}+3x=2-2x
2-ஐ 1-x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{2}+3x-2=-2x
இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
3x^{2}+3x-2+2x=0
இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
3x^{2}+5x-2=0
3x மற்றும் 2x-ஐ இணைத்தால், தீர்வு 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 3, b-க்குப் பதிலாக 5 மற்றும் c-க்குப் பதிலாக -2-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
5-ஐ வர்க்கமாக்கவும்.
x=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-5±\sqrt{25+24}}{2\times 3}
-2-ஐ -12 முறை பெருக்கவும்.
x=\frac{-5±\sqrt{49}}{2\times 3}
24-க்கு 25-ஐக் கூட்டவும்.
x=\frac{-5±7}{2\times 3}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-5±7}{6}
3-ஐ 2 முறை பெருக்கவும்.
x=\frac{2}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-5±7}{6}-ஐத் தீர்க்கவும். 7-க்கு -5-ஐக் கூட்டவும்.
x=\frac{1}{3}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{2}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{12}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-5±7}{6}-ஐத் தீர்க்கவும். -5–இலிருந்து 7–ஐக் கழிக்கவும்.
x=-2
-12-ஐ 6-ஆல் வகுக்கவும்.
x=\frac{1}{3} x=-2
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
3x^{2}+3x=2\left(1-x\right)
3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{2}+3x=2-2x
2-ஐ 1-x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{2}+3x+2x=2
இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
3x^{2}+5x=2
3x மற்றும் 2x-ஐ இணைத்தால், தீர்வு 5x.
\frac{3x^{2}+5x}{3}=\frac{2}{3}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x^{2}+\frac{5}{3}x=\frac{2}{3}
3-ஆல் வகுத்தல் 3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(\frac{5}{6}\right)^{2}
\frac{5}{6}-ஐப் பெற, x உறுப்பின் ஈவான \frac{5}{3}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{5}{6}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{5}{6}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{25}{36} உடன் \frac{2}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{5}{6}\right)^{2}=\frac{49}{36}
காரணி x^{2}+\frac{5}{3}x+\frac{25}{36}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{5}{6}=\frac{7}{6} x+\frac{5}{6}=-\frac{7}{6}
எளிமையாக்கவும்.
x=\frac{1}{3} x=-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{6}-ஐக் கழிக்கவும்.