பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x^{2}-6x-56=0
இரு பக்கங்களில் இருந்தும் 56-ஐக் கழிக்கவும்.
x^{2}-3x-28=0
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a+b=-3 ab=1\left(-28\right)=-28
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx-28-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-28 2,-14 4,-7
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -28 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-28=-27 2-14=-12 4-7=-3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-7 b=4
-3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-7x\right)+\left(4x-28\right)
x^{2}-3x-28 என்பதை \left(x^{2}-7x\right)+\left(4x-28\right) என மீண்டும் எழுதவும்.
x\left(x-7\right)+4\left(x-7\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(x-7\right)\left(x+4\right)
பரவல் பண்பைப் பயன்படுத்தி x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=7 x=-4
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-7=0 மற்றும் x+4=0-ஐத் தீர்க்கவும்.
2x^{2}-6x=56
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
2x^{2}-6x-56=56-56
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 56-ஐக் கழிக்கவும்.
2x^{2}-6x-56=0
56-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-56\right)}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -6 மற்றும் c-க்குப் பதிலாக -56-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-56\right)}}{2\times 2}
-6-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-56\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36+448}}{2\times 2}
-56-ஐ -8 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{484}}{2\times 2}
448-க்கு 36-ஐக் கூட்டவும்.
x=\frac{-\left(-6\right)±22}{2\times 2}
484-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{6±22}{2\times 2}
-6-க்கு எதிரில் இருப்பது 6.
x=\frac{6±22}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{28}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{6±22}{4}-ஐத் தீர்க்கவும். 22-க்கு 6-ஐக் கூட்டவும்.
x=7
28-ஐ 4-ஆல் வகுக்கவும்.
x=-\frac{16}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{6±22}{4}-ஐத் தீர்க்கவும். 6–இலிருந்து 22–ஐக் கழிக்கவும்.
x=-4
-16-ஐ 4-ஆல் வகுக்கவும்.
x=7 x=-4
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}-6x=56
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{2x^{2}-6x}{2}=\frac{56}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{56}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-3x=\frac{56}{2}
-6-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-3x=28
56-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2}-ஐப் பெற, x உறுப்பின் ஈவான -3-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-3x+\frac{9}{4}=28+\frac{9}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-3x+\frac{9}{4}=\frac{121}{4}
\frac{9}{4}-க்கு 28-ஐக் கூட்டவும்.
\left(x-\frac{3}{2}\right)^{2}=\frac{121}{4}
காரணி x^{2}-3x+\frac{9}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{3}{2}=\frac{11}{2} x-\frac{3}{2}=-\frac{11}{2}
எளிமையாக்கவும்.
x=7 x=-4
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{2}-ஐக் கூட்டவும்.