மதிப்பிடவும்
114-38\sqrt{15}\approx -33.173367156
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(19\sqrt{5}-19\sqrt{3}+19\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)
19-ஐ \sqrt{5}-\sqrt{3}+\sqrt{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
19\left(\sqrt{5}\right)^{2}-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
19\sqrt{5}-19\sqrt{3}+19\sqrt{2}-இன் ஒவ்வொரு கலத்தையும் \sqrt{5}-\sqrt{3}-\sqrt{2}-இன் ஒவ்வொரு கலத்தால் பெருக்குவதன் மூலம் பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
19\times 5-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{5}-இன் வர்க்கம் 5 ஆகும்.
95-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
19 மற்றும் 5-ஐப் பெருக்கவும், தீர்வு 95.
95-19\sqrt{15}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{3} மற்றும் \sqrt{5}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{5} மற்றும் \sqrt{2}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{15}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{3} மற்றும் \sqrt{5}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
95-38\sqrt{15}-19\sqrt{10}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
-19\sqrt{15} மற்றும் -19\sqrt{15}-ஐ இணைத்தால், தீர்வு -38\sqrt{15}.
95-38\sqrt{15}-19\sqrt{10}+19\times 3+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
95-38\sqrt{15}-19\sqrt{10}+57+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
19 மற்றும் 3-ஐப் பெருக்கவும், தீர்வு 57.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
95 மற்றும் 57-ஐக் கூட்டவும், தீர்வு 152.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{3} மற்றும் \sqrt{2}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{10}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
\sqrt{2} மற்றும் \sqrt{5}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
-19\sqrt{10} மற்றும் 19\sqrt{10}-ஐ இணைத்தால், தீர்வு 0.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{6}-19\left(\sqrt{2}\right)^{2}
\sqrt{3} மற்றும் \sqrt{2}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
152-38\sqrt{15}-19\left(\sqrt{2}\right)^{2}
19\sqrt{6} மற்றும் -19\sqrt{6}-ஐ இணைத்தால், தீர்வு 0.
152-38\sqrt{15}-19\times 2
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
152-38\sqrt{15}-38
-19 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு -38.
114-38\sqrt{15}
152-இலிருந்து 38-ஐக் கழிக்கவும், தீர்வு 114.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}