x-க்காகத் தீர்க்கவும்
x=3
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(12-2x\right)x=18
6-x-ஐ 2-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
12x-2x^{2}=18
12-2x-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
12x-2x^{2}-18=0
இரு பக்கங்களில் இருந்தும் 18-ஐக் கழிக்கவும்.
-2x^{2}+12x-18=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -2, b-க்குப் பதிலாக 12 மற்றும் c-க்குப் பதிலாக -18-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-12±\sqrt{144-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
12-ஐ வர்க்கமாக்கவும்.
x=\frac{-12±\sqrt{144+8\left(-18\right)}}{2\left(-2\right)}
-2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-12±\sqrt{144-144}}{2\left(-2\right)}
-18-ஐ 8 முறை பெருக்கவும்.
x=\frac{-12±\sqrt{0}}{2\left(-2\right)}
-144-க்கு 144-ஐக் கூட்டவும்.
x=-\frac{12}{2\left(-2\right)}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-\frac{12}{-4}
-2-ஐ 2 முறை பெருக்கவும்.
x=3
-12-ஐ -4-ஆல் வகுக்கவும்.
\left(12-2x\right)x=18
6-x-ஐ 2-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
12x-2x^{2}=18
12-2x-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-2x^{2}+12x=18
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-2x^{2}+12x}{-2}=\frac{18}{-2}
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x^{2}+\frac{12}{-2}x=\frac{18}{-2}
-2-ஆல் வகுத்தல் -2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-6x=\frac{18}{-2}
12-ஐ -2-ஆல் வகுக்கவும்.
x^{2}-6x=-9
18-ஐ -2-ஆல் வகுக்கவும்.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
-3-ஐப் பெற, x உறுப்பின் ஈவான -6-ஐ 2-ஆல் வகுக்கவும். பிறகு -3-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-6x+9=-9+9
-3-ஐ வர்க்கமாக்கவும்.
x^{2}-6x+9=0
9-க்கு -9-ஐக் கூட்டவும்.
\left(x-3\right)^{2}=0
காரணி x^{2}-6x+9. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-3=0 x-3=0
எளிமையாக்கவும்.
x=3 x=3
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.
x=3
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}