பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x-4y=12,4x+y=18
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-4y=12
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=4y+12
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(4y+12\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{4}{5}y+\frac{12}{5}
12+4y-ஐ \frac{1}{5} முறை பெருக்கவும்.
4\left(\frac{4}{5}y+\frac{12}{5}\right)+y=18
பிற சமன்பாடு 4x+y=18-இல் x-க்கு \frac{12+4y}{5}-ஐப் பிரதியிடவும்.
\frac{16}{5}y+\frac{48}{5}+y=18
\frac{12+4y}{5}-ஐ 4 முறை பெருக்கவும்.
\frac{21}{5}y+\frac{48}{5}=18
y-க்கு \frac{16y}{5}-ஐக் கூட்டவும்.
\frac{21}{5}y=\frac{42}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{48}{5}-ஐக் கழிக்கவும்.
y=2
சமன்பாட்டின் இரு பக்கங்களையும் \frac{21}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{4}{5}\times 2+\frac{12}{5}
x=\frac{4}{5}y+\frac{12}{5}-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{8+12}{5}
2-ஐ \frac{4}{5} முறை பெருக்கவும்.
x=4
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{8}{5} உடன் \frac{12}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=4,y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-4y=12,4x+y=18
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-4\\4&1\end{matrix}\right))\left(\begin{matrix}5&-4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\4&1\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
\left(\begin{matrix}5&-4\\4&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\4&1\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\4&1\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-4\times 4\right)}&-\frac{-4}{5-\left(-4\times 4\right)}\\-\frac{4}{5-\left(-4\times 4\right)}&\frac{5}{5-\left(-4\times 4\right)}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}&\frac{4}{21}\\-\frac{4}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}\times 12+\frac{4}{21}\times 18\\-\frac{4}{21}\times 12+\frac{5}{21}\times 18\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=4,y=2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-4y=12,4x+y=18
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 5x+4\left(-4\right)y=4\times 12,5\times 4x+5y=5\times 18
5x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
20x-16y=48,20x+5y=90
எளிமையாக்கவும்.
20x-20x-16y-5y=48-90
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 20x-16y=48-இலிருந்து 20x+5y=90-ஐக் கழிக்கவும்.
-16y-5y=48-90
-20x-க்கு 20x-ஐக் கூட்டவும். விதிகள் 20x மற்றும் -20x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-21y=48-90
-5y-க்கு -16y-ஐக் கூட்டவும்.
-21y=-42
-90-க்கு 48-ஐக் கூட்டவும்.
y=2
இரு பக்கங்களையும் -21-ஆல் வகுக்கவும்.
4x+2=18
4x+y=18-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x=16
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=4
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=4,y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.