பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x-y=2,x+2y=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=y+2
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(y+2\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{1}{3}y+\frac{2}{3}
y+2-ஐ \frac{1}{3} முறை பெருக்கவும்.
\frac{1}{3}y+\frac{2}{3}+2y=3
பிற சமன்பாடு x+2y=3-இல் x-க்கு \frac{2+y}{3}-ஐப் பிரதியிடவும்.
\frac{7}{3}y+\frac{2}{3}=3
2y-க்கு \frac{y}{3}-ஐக் கூட்டவும்.
\frac{7}{3}y=\frac{7}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{2}{3}-ஐக் கழிக்கவும்.
y=1
சமன்பாட்டின் இரு பக்கங்களையும் \frac{7}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{1+2}{3}
x=\frac{1}{3}y+\frac{2}{3}-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{3} உடன் \frac{2}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-y=2,x+2y=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
\left(\begin{matrix}3&-1\\1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-1\right)}&-\frac{-1}{3\times 2-\left(-1\right)}\\-\frac{1}{3\times 2-\left(-1\right)}&\frac{3}{3\times 2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 3\\-\frac{1}{7}\times 2+\frac{3}{7}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-y=2,x+2y=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3x-y=2,3x+3\times 2y=3\times 3
3x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
3x-y=2,3x+6y=9
எளிமையாக்கவும்.
3x-3x-y-6y=2-9
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 3x-y=2-இலிருந்து 3x+6y=9-ஐக் கழிக்கவும்.
-y-6y=2-9
-3x-க்கு 3x-ஐக் கூட்டவும். விதிகள் 3x மற்றும் -3x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-7y=2-9
-6y-க்கு -y-ஐக் கூட்டவும்.
-7y=-7
-9-க்கு 2-ஐக் கூட்டவும்.
y=1
இரு பக்கங்களையும் -7-ஆல் வகுக்கவும்.
x+2=3
x+2y=3-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=1,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.