பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
x, y-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y=mx-2m+\sqrt{2}
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். m-ஐ x-2-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
பிற சமன்பாடு x^{2}+2y^{2}=8-இல் y-க்கு mx-2m+\sqrt{2}-ஐப் பிரதியிடவும்.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
mx-2m+\sqrt{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}-ஐ 2 முறை பெருக்கவும்.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
2m^{2}x^{2}-க்கு x^{2}-ஐக் கூட்டவும்.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1+2m^{2}, b-க்குப் பதிலாக 2\times 2m\left(-2m+\sqrt{2}\right) மற்றும் c-க்குப் பதிலாக -4+8m^{2}-8m\sqrt{2}-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
2\times 2m\left(-2m+\sqrt{2}\right)-ஐ வர்க்கமாக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
1+2m^{2}-ஐ -4 முறை பெருக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
-4+8m^{2}-8m\sqrt{2}-ஐ -4-8m^{2} முறை பெருக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}-க்கு 16m^{2}\left(-2m+\sqrt{2}\right)^{2}-ஐக் கூட்டவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
16+32m^{2}+32m\sqrt{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
1+2m^{2}-ஐ 2 முறை பெருக்கவும்.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}-ஐத் தீர்க்கவும். 4\sqrt{1+2m^{2}+2m\sqrt{2}}-க்கு -4m\left(-2m+\sqrt{2}\right)-ஐக் கூட்டவும்.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
-4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}}-ஐ 2+4m^{2}-ஆல் வகுக்கவும்.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}-ஐத் தீர்க்கவும். -4m\left(-2m+\sqrt{2}\right)–இலிருந்து 4\sqrt{1+2m^{2}+2m\sqrt{2}}–ஐக் கழிக்கவும்.
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}}-ஐ 2+4m^{2}-ஆல் வகுக்கவும்.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
x-க்கு இரு தீர்வுகள் உள்ளன: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} மற்றும் \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. இரு சமன்பாடுகளுக்கும் இணங்க அமைகின்ற y-க்குரிய தீர்வைக் கண்டுபிடிக்க, y=mx-2m+\sqrt{2} சமன்பாட்டில் x-க்காக \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}-ஐப் பிரதியிடவும்.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
\frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}-ஐ m முறை பெருக்கவும்.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
இரு சமன்பாடுகளுக்கும் இணங்க அமைகின்ற y-க்குரிய தீர்வைக் கண்டுபிடிக்க, இப்போது y=mx-2m+\sqrt{2} சமன்பாட்டில் x-க்காக \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}-ஐப் பிரதியிட்டு, தீர்க்கவும்.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
\frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}-ஐ m முறை பெருக்கவும்.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.