பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

8x-5y=10,6x-4y=11
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
8x-5y=10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
8x=5y+10
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{8}\left(5y+10\right)
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=\frac{5}{8}y+\frac{5}{4}
10+5y-ஐ \frac{1}{8} முறை பெருக்கவும்.
6\left(\frac{5}{8}y+\frac{5}{4}\right)-4y=11
பிற சமன்பாடு 6x-4y=11-இல் x-க்கு \frac{5}{4}+\frac{5y}{8}-ஐப் பிரதியிடவும்.
\frac{15}{4}y+\frac{15}{2}-4y=11
\frac{5}{4}+\frac{5y}{8}-ஐ 6 முறை பெருக்கவும்.
-\frac{1}{4}y+\frac{15}{2}=11
-4y-க்கு \frac{15y}{4}-ஐக் கூட்டவும்.
-\frac{1}{4}y=\frac{7}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{15}{2}-ஐக் கழிக்கவும்.
y=-14
இரு பக்கங்களையும் -4-ஆல் பெருக்கவும்.
x=\frac{5}{8}\left(-14\right)+\frac{5}{4}
x=\frac{5}{8}y+\frac{5}{4}-இல் y-க்கு -14-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-35+5}{4}
-14-ஐ \frac{5}{8} முறை பெருக்கவும்.
x=-\frac{15}{2}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{35}{4} உடன் \frac{5}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{15}{2},y=-14
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
8x-5y=10,6x-4y=11
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{8\left(-4\right)-\left(-5\times 6\right)}&-\frac{-5}{8\left(-4\right)-\left(-5\times 6\right)}\\-\frac{6}{8\left(-4\right)-\left(-5\times 6\right)}&\frac{8}{8\left(-4\right)-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{5}{2}\\3&-4\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 10-\frac{5}{2}\times 11\\3\times 10-4\times 11\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{2}\\-14\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{15}{2},y=-14
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
8x-5y=10,6x-4y=11
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\times 8x+6\left(-5\right)y=6\times 10,8\times 6x+8\left(-4\right)y=8\times 11
8x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 8-ஆலும் பெருக்கவும்.
48x-30y=60,48x-32y=88
எளிமையாக்கவும்.
48x-48x-30y+32y=60-88
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 48x-30y=60-இலிருந்து 48x-32y=88-ஐக் கழிக்கவும்.
-30y+32y=60-88
-48x-க்கு 48x-ஐக் கூட்டவும். விதிகள் 48x மற்றும் -48x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
2y=60-88
32y-க்கு -30y-ஐக் கூட்டவும்.
2y=-28
-88-க்கு 60-ஐக் கூட்டவும்.
y=-14
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
6x-4\left(-14\right)=11
6x-4y=11-இல் y-க்கு -14-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x+56=11
-14-ஐ -4 முறை பெருக்கவும்.
6x=-45
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 56-ஐக் கழிக்கவும்.
x=-\frac{15}{2}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=-\frac{15}{2},y=-14
இப்போது அமைப்பு சரிசெய்யப்பட்டது.