பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

6x-7y=4
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 7y-ஐக் கழிக்கவும்.
2x-14y=-1
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
6x-7y=4,2x-14y=-1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
6x-7y=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
6x=7y+4
சமன்பாட்டின் இரு பக்கங்களிலும் 7y-ஐக் கூட்டவும்.
x=\frac{1}{6}\left(7y+4\right)
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=\frac{7}{6}y+\frac{2}{3}
7y+4-ஐ \frac{1}{6} முறை பெருக்கவும்.
2\left(\frac{7}{6}y+\frac{2}{3}\right)-14y=-1
பிற சமன்பாடு 2x-14y=-1-இல் x-க்கு \frac{7y}{6}+\frac{2}{3}-ஐப் பிரதியிடவும்.
\frac{7}{3}y+\frac{4}{3}-14y=-1
\frac{7y}{6}+\frac{2}{3}-ஐ 2 முறை பெருக்கவும்.
-\frac{35}{3}y+\frac{4}{3}=-1
-14y-க்கு \frac{7y}{3}-ஐக் கூட்டவும்.
-\frac{35}{3}y=-\frac{7}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{4}{3}-ஐக் கழிக்கவும்.
y=\frac{1}{5}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{35}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{7}{6}\times \frac{1}{5}+\frac{2}{3}
x=\frac{7}{6}y+\frac{2}{3}-இல் y-க்கு \frac{1}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{7}{30}+\frac{2}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{1}{5}-ஐ \frac{7}{6} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{9}{10}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{7}{30} உடன் \frac{2}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{9}{10},y=\frac{1}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
6x-7y=4
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 7y-ஐக் கழிக்கவும்.
2x-14y=-1
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
6x-7y=4,2x-14y=-1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right))\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-7\\2&-14\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{6\left(-14\right)-\left(-7\times 2\right)}&-\frac{-7}{6\left(-14\right)-\left(-7\times 2\right)}\\-\frac{2}{6\left(-14\right)-\left(-7\times 2\right)}&\frac{6}{6\left(-14\right)-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{1}{10}\\\frac{1}{35}&-\frac{3}{35}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4-\frac{1}{10}\left(-1\right)\\\frac{1}{35}\times 4-\frac{3}{35}\left(-1\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}\\\frac{1}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{9}{10},y=\frac{1}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
6x-7y=4
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 7y-ஐக் கழிக்கவும்.
2x-14y=-1
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
6x-7y=4,2x-14y=-1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 6x+2\left(-7\right)y=2\times 4,6\times 2x+6\left(-14\right)y=6\left(-1\right)
6x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் பெருக்கவும்.
12x-14y=8,12x-84y=-6
எளிமையாக்கவும்.
12x-12x-14y+84y=8+6
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x-14y=8-இலிருந்து 12x-84y=-6-ஐக் கழிக்கவும்.
-14y+84y=8+6
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
70y=8+6
84y-க்கு -14y-ஐக் கூட்டவும்.
70y=14
6-க்கு 8-ஐக் கூட்டவும்.
y=\frac{1}{5}
இரு பக்கங்களையும் 70-ஆல் வகுக்கவும்.
2x-14\times \frac{1}{5}=-1
2x-14y=-1-இல் y-க்கு \frac{1}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x-\frac{14}{5}=-1
\frac{1}{5}-ஐ -14 முறை பெருக்கவும்.
2x=\frac{9}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{14}{5}-ஐக் கூட்டவும்.
x=\frac{9}{10}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{9}{10},y=\frac{1}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.