பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x-4y=19,x+2y=7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-4y=19
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=4y+19
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(4y+19\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{4}{5}y+\frac{19}{5}
4y+19-ஐ \frac{1}{5} முறை பெருக்கவும்.
\frac{4}{5}y+\frac{19}{5}+2y=7
பிற சமன்பாடு x+2y=7-இல் x-க்கு \frac{4y+19}{5}-ஐப் பிரதியிடவும்.
\frac{14}{5}y+\frac{19}{5}=7
2y-க்கு \frac{4y}{5}-ஐக் கூட்டவும்.
\frac{14}{5}y=\frac{16}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{19}{5}-ஐக் கழிக்கவும்.
y=\frac{8}{7}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{14}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{4}{5}\times \frac{8}{7}+\frac{19}{5}
x=\frac{4}{5}y+\frac{19}{5}-இல் y-க்கு \frac{8}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{32}{35}+\frac{19}{5}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{8}{7}-ஐ \frac{4}{5} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{33}{7}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{32}{35} உடன் \frac{19}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{33}{7},y=\frac{8}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-4y=19,x+2y=7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\right)}&-\frac{-4}{5\times 2-\left(-4\right)}\\-\frac{1}{5\times 2-\left(-4\right)}&\frac{5}{5\times 2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{1}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 19+\frac{2}{7}\times 7\\-\frac{1}{14}\times 19+\frac{5}{14}\times 7\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{7}\\\frac{8}{7}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{33}{7},y=\frac{8}{7}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-4y=19,x+2y=7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5x-4y=19,5x+5\times 2y=5\times 7
5x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
5x-4y=19,5x+10y=35
எளிமையாக்கவும்.
5x-5x-4y-10y=19-35
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5x-4y=19-இலிருந்து 5x+10y=35-ஐக் கழிக்கவும்.
-4y-10y=19-35
-5x-க்கு 5x-ஐக் கூட்டவும். விதிகள் 5x மற்றும் -5x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-14y=19-35
-10y-க்கு -4y-ஐக் கூட்டவும்.
-14y=-16
-35-க்கு 19-ஐக் கூட்டவும்.
y=\frac{8}{7}
இரு பக்கங்களையும் -14-ஆல் வகுக்கவும்.
x+2\times \frac{8}{7}=7
x+2y=7-இல் y-க்கு \frac{8}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x+\frac{16}{7}=7
\frac{8}{7}-ஐ 2 முறை பெருக்கவும்.
x=\frac{33}{7}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{16}{7}-ஐக் கழிக்கவும்.
x=\frac{33}{7},y=\frac{8}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.