x, y-க்காகத் தீர்க்கவும்
x=\frac{1}{4}=0.25
y = -\frac{19}{8} = -2\frac{3}{8} = -2.375
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2x-4y=10,6x-4y=11
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x-4y=10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=4y+10
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
x=\frac{1}{2}\left(4y+10\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=2y+5
4y+10-ஐ \frac{1}{2} முறை பெருக்கவும்.
6\left(2y+5\right)-4y=11
பிற சமன்பாடு 6x-4y=11-இல் x-க்கு 2y+5-ஐப் பிரதியிடவும்.
12y+30-4y=11
2y+5-ஐ 6 முறை பெருக்கவும்.
8y+30=11
-4y-க்கு 12y-ஐக் கூட்டவும்.
8y=-19
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 30-ஐக் கழிக்கவும்.
y=-\frac{19}{8}
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=2\left(-\frac{19}{8}\right)+5
x=2y+5-இல் y-க்கு -\frac{19}{8}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{19}{4}+5
-\frac{19}{8}-ஐ 2 முறை பெருக்கவும்.
x=\frac{1}{4}
-\frac{19}{4}-க்கு 5-ஐக் கூட்டவும்.
x=\frac{1}{4},y=-\frac{19}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x-4y=10,6x-4y=11
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-4\times 6\right)}&-\frac{-4}{2\left(-4\right)-\left(-4\times 6\right)}\\-\frac{6}{2\left(-4\right)-\left(-4\times 6\right)}&\frac{2}{2\left(-4\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 10+\frac{1}{4}\times 11\\-\frac{3}{8}\times 10+\frac{1}{8}\times 11\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\-\frac{19}{8}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{1}{4},y=-\frac{19}{8}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x-4y=10,6x-4y=11
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x-6x-4y+4y=10-11
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x-4y=10-இலிருந்து 6x-4y=11-ஐக் கழிக்கவும்.
2x-6x=10-11
4y-க்கு -4y-ஐக் கூட்டவும். விதிகள் -4y மற்றும் 4y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-4x=10-11
-6x-க்கு 2x-ஐக் கூட்டவும்.
-4x=-1
-11-க்கு 10-ஐக் கூட்டவும்.
x=\frac{1}{4}
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
6\times \frac{1}{4}-4y=11
6x-4y=11-இல் x-க்கு \frac{1}{4}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
\frac{3}{2}-4y=11
\frac{1}{4}-ஐ 6 முறை பெருக்கவும்.
-4y=\frac{19}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{2}-ஐக் கழிக்கவும்.
y=-\frac{19}{8}
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=\frac{1}{4},y=-\frac{19}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}