x, y-க்காகத் தீர்க்கவும்
x=13
y = -\frac{17}{3} = -5\frac{2}{3} \approx -5.666666667
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2x+3y=9,4x+9y=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+3y=9
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-3y+9
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-3y+9\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{3}{2}y+\frac{9}{2}
-3y+9-ஐ \frac{1}{2} முறை பெருக்கவும்.
4\left(-\frac{3}{2}y+\frac{9}{2}\right)+9y=1
பிற சமன்பாடு 4x+9y=1-இல் x-க்கு \frac{-3y+9}{2}-ஐப் பிரதியிடவும்.
-6y+18+9y=1
\frac{-3y+9}{2}-ஐ 4 முறை பெருக்கவும்.
3y+18=1
9y-க்கு -6y-ஐக் கூட்டவும்.
3y=-17
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 18-ஐக் கழிக்கவும்.
y=-\frac{17}{3}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{3}{2}\left(-\frac{17}{3}\right)+\frac{9}{2}
x=-\frac{3}{2}y+\frac{9}{2}-இல் y-க்கு -\frac{17}{3}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{17+9}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{17}{3}-ஐ -\frac{3}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=13
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{17}{2} உடன் \frac{9}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=13,y=-\frac{17}{3}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+3y=9,4x+9y=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&3\\4&9\end{matrix}\right))\left(\begin{matrix}2&3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&9\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
\left(\begin{matrix}2&3\\4&9\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&9\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&9\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\times 9-3\times 4}&-\frac{3}{2\times 9-3\times 4}\\-\frac{4}{2\times 9-3\times 4}&\frac{2}{2\times 9-3\times 4}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 9-\frac{1}{2}\\-\frac{2}{3}\times 9+\frac{1}{3}\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-\frac{17}{3}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=13,y=-\frac{17}{3}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+3y=9,4x+9y=1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 2x+4\times 3y=4\times 9,2\times 4x+2\times 9y=2
2x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
8x+12y=36,8x+18y=2
எளிமையாக்கவும்.
8x-8x+12y-18y=36-2
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 8x+12y=36-இலிருந்து 8x+18y=2-ஐக் கழிக்கவும்.
12y-18y=36-2
-8x-க்கு 8x-ஐக் கூட்டவும். விதிகள் 8x மற்றும் -8x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-6y=36-2
-18y-க்கு 12y-ஐக் கூட்டவும்.
-6y=34
-2-க்கு 36-ஐக் கூட்டவும்.
y=-\frac{17}{3}
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
4x+9\left(-\frac{17}{3}\right)=1
4x+9y=1-இல் y-க்கு -\frac{17}{3}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x-51=1
-\frac{17}{3}-ஐ 9 முறை பெருக்கவும்.
4x=52
சமன்பாட்டின் இரு பக்கங்களிலும் 51-ஐக் கூட்டவும்.
x=13
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=13,y=-\frac{17}{3}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}