x, y-க்காகத் தீர்க்கவும்
x=\frac{5}{6}\approx 0.833333333
y = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2x+2y=6,-5x+7y=11
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+2y=6
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-2y+6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-2y+6\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-y+3
-2y+6-ஐ \frac{1}{2} முறை பெருக்கவும்.
-5\left(-y+3\right)+7y=11
பிற சமன்பாடு -5x+7y=11-இல் x-க்கு -y+3-ஐப் பிரதியிடவும்.
5y-15+7y=11
-y+3-ஐ -5 முறை பெருக்கவும்.
12y-15=11
7y-க்கு 5y-ஐக் கூட்டவும்.
12y=26
சமன்பாட்டின் இரு பக்கங்களிலும் 15-ஐக் கூட்டவும்.
y=\frac{13}{6}
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=-\frac{13}{6}+3
x=-y+3-இல் y-க்கு \frac{13}{6}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{5}{6}
-\frac{13}{6}-க்கு 3-ஐக் கூட்டவும்.
x=\frac{5}{6},y=\frac{13}{6}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+2y=6,-5x+7y=11
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-2\left(-5\right)}&-\frac{2}{2\times 7-2\left(-5\right)}\\-\frac{-5}{2\times 7-2\left(-5\right)}&\frac{2}{2\times 7-2\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}&-\frac{1}{12}\\\frac{5}{24}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}\times 6-\frac{1}{12}\times 11\\\frac{5}{24}\times 6+\frac{1}{12}\times 11\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{13}{6}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{5}{6},y=\frac{13}{6}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+2y=6,-5x+7y=11
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-5\times 2x-5\times 2y=-5\times 6,2\left(-5\right)x+2\times 7y=2\times 11
2x மற்றும் -5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
-10x-10y=-30,-10x+14y=22
எளிமையாக்கவும்.
-10x+10x-10y-14y=-30-22
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -10x-10y=-30-இலிருந்து -10x+14y=22-ஐக் கழிக்கவும்.
-10y-14y=-30-22
10x-க்கு -10x-ஐக் கூட்டவும். விதிகள் -10x மற்றும் 10x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-24y=-30-22
-14y-க்கு -10y-ஐக் கூட்டவும்.
-24y=-52
-22-க்கு -30-ஐக் கூட்டவும்.
y=\frac{13}{6}
இரு பக்கங்களையும் -24-ஆல் வகுக்கவும்.
-5x+7\times \frac{13}{6}=11
-5x+7y=11-இல் y-க்கு \frac{13}{6}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-5x+\frac{91}{6}=11
\frac{13}{6}-ஐ 7 முறை பெருக்கவும்.
-5x=-\frac{25}{6}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{91}{6}-ஐக் கழிக்கவும்.
x=\frac{5}{6}
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=\frac{5}{6},y=\frac{13}{6}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}