r, s-க்காகத் தீர்க்கவும்
r = \frac{14}{13} = 1\frac{1}{13} \approx 1.076923077
s=\frac{5}{13}\approx 0.384615385
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2r-3s=1
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
3r+2s=4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
2r-3s=1,3r+2s=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2r-3s=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் r-ஐத் தனிப்படுத்தி r-க்காக இதைத் தீர்க்கவும்.
2r=3s+1
சமன்பாட்டின் இரு பக்கங்களிலும் 3s-ஐக் கூட்டவும்.
r=\frac{1}{2}\left(3s+1\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
r=\frac{3}{2}s+\frac{1}{2}
3s+1-ஐ \frac{1}{2} முறை பெருக்கவும்.
3\left(\frac{3}{2}s+\frac{1}{2}\right)+2s=4
பிற சமன்பாடு 3r+2s=4-இல் r-க்கு \frac{3s+1}{2}-ஐப் பிரதியிடவும்.
\frac{9}{2}s+\frac{3}{2}+2s=4
\frac{3s+1}{2}-ஐ 3 முறை பெருக்கவும்.
\frac{13}{2}s+\frac{3}{2}=4
2s-க்கு \frac{9s}{2}-ஐக் கூட்டவும்.
\frac{13}{2}s=\frac{5}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{2}-ஐக் கழிக்கவும்.
s=\frac{5}{13}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{13}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
r=\frac{3}{2}\times \frac{5}{13}+\frac{1}{2}
r=\frac{3}{2}s+\frac{1}{2}-இல் s-க்கு \frac{5}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக r-க்குத் தீர்க்கலாம்.
r=\frac{15}{26}+\frac{1}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{5}{13}-ஐ \frac{3}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
r=\frac{14}{13}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{15}{26} உடன் \frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
r=\frac{14}{13},s=\frac{5}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2r-3s=1
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
3r+2s=4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
2r-3s=1,3r+2s=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}+\frac{3}{13}\times 4\\-\frac{3}{13}+\frac{2}{13}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{14}{13}\\\frac{5}{13}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
r=\frac{14}{13},s=\frac{5}{13}
அணிக் கூறுகள் r மற்றும் s-ஐப் பிரித்தெடுக்கவும்.
2r-3s=1
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
3r+2s=4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
2r-3s=1,3r+2s=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 2r+3\left(-3\right)s=3,2\times 3r+2\times 2s=2\times 4
2r மற்றும் 3r-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
6r-9s=3,6r+4s=8
எளிமையாக்கவும்.
6r-6r-9s-4s=3-8
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6r-9s=3-இலிருந்து 6r+4s=8-ஐக் கழிக்கவும்.
-9s-4s=3-8
-6r-க்கு 6r-ஐக் கூட்டவும். விதிகள் 6r மற்றும் -6r ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-13s=3-8
-4s-க்கு -9s-ஐக் கூட்டவும்.
-13s=-5
-8-க்கு 3-ஐக் கூட்டவும்.
s=\frac{5}{13}
இரு பக்கங்களையும் -13-ஆல் வகுக்கவும்.
3r+2\times \frac{5}{13}=4
3r+2s=4-இல் s-க்கு \frac{5}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக r-க்குத் தீர்க்கலாம்.
3r+\frac{10}{13}=4
\frac{5}{13}-ஐ 2 முறை பெருக்கவும்.
3r=\frac{42}{13}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{10}{13}-ஐக் கழிக்கவும்.
r=\frac{14}{13}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
r=\frac{14}{13},s=\frac{5}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}