x, y-க்காகத் தீர்க்கவும்
x=5
y=5
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-12x+10y=-10,6x-7y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-12x+10y=-10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-12x=-10y-10
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 10y-ஐக் கழிக்கவும்.
x=-\frac{1}{12}\left(-10y-10\right)
இரு பக்கங்களையும் -12-ஆல் வகுக்கவும்.
x=\frac{5}{6}y+\frac{5}{6}
-10y-10-ஐ -\frac{1}{12} முறை பெருக்கவும்.
6\left(\frac{5}{6}y+\frac{5}{6}\right)-7y=-5
பிற சமன்பாடு 6x-7y=-5-இல் x-க்கு \frac{5+5y}{6}-ஐப் பிரதியிடவும்.
5y+5-7y=-5
\frac{5+5y}{6}-ஐ 6 முறை பெருக்கவும்.
-2y+5=-5
-7y-க்கு 5y-ஐக் கூட்டவும்.
-2y=-10
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
y=5
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x=\frac{5}{6}\times 5+\frac{5}{6}
x=\frac{5}{6}y+\frac{5}{6}-இல் y-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{25+5}{6}
5-ஐ \frac{5}{6} முறை பெருக்கவும்.
x=5
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{25}{6} உடன் \frac{5}{6}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=5,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-12x+10y=-10,6x-7y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-12\left(-7\right)-10\times 6}&-\frac{10}{-12\left(-7\right)-10\times 6}\\-\frac{6}{-12\left(-7\right)-10\times 6}&-\frac{12}{-12\left(-7\right)-10\times 6}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}&-\frac{5}{12}\\-\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\left(-10\right)-\frac{5}{12}\left(-5\right)\\-\frac{1}{4}\left(-10\right)-\frac{1}{2}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=5,y=5
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-12x+10y=-10,6x-7y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\left(-12\right)x+6\times 10y=6\left(-10\right),-12\times 6x-12\left(-7\right)y=-12\left(-5\right)
-12x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -12-ஆலும் பெருக்கவும்.
-72x+60y=-60,-72x+84y=60
எளிமையாக்கவும்.
-72x+72x+60y-84y=-60-60
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -72x+60y=-60-இலிருந்து -72x+84y=60-ஐக் கழிக்கவும்.
60y-84y=-60-60
72x-க்கு -72x-ஐக் கூட்டவும். விதிகள் -72x மற்றும் 72x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-24y=-60-60
-84y-க்கு 60y-ஐக் கூட்டவும்.
-24y=-120
-60-க்கு -60-ஐக் கூட்டவும்.
y=5
இரு பக்கங்களையும் -24-ஆல் வகுக்கவும்.
6x-7\times 5=-5
6x-7y=-5-இல் y-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x-35=-5
5-ஐ -7 முறை பெருக்கவும்.
6x=30
சமன்பாட்டின் இரு பக்கங்களிலும் 35-ஐக் கூட்டவும்.
x=5
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=5,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}