பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x-3y=24
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 4,8-இன் சிறிய பொது பெருக்கியான 8-ஆல் பெருக்கவும்.
10x-3y=72
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,2-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
2x-3y=24,10x-3y=72
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x-3y=24
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=3y+24
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{2}\left(3y+24\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{3}{2}y+12
24+3y-ஐ \frac{1}{2} முறை பெருக்கவும்.
10\left(\frac{3}{2}y+12\right)-3y=72
பிற சமன்பாடு 10x-3y=72-இல் x-க்கு \frac{3y}{2}+12-ஐப் பிரதியிடவும்.
15y+120-3y=72
\frac{3y}{2}+12-ஐ 10 முறை பெருக்கவும்.
12y+120=72
-3y-க்கு 15y-ஐக் கூட்டவும்.
12y=-48
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 120-ஐக் கழிக்கவும்.
y=-4
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=\frac{3}{2}\left(-4\right)+12
x=\frac{3}{2}y+12-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-6+12
-4-ஐ \frac{3}{2} முறை பெருக்கவும்.
x=6
-6-க்கு 12-ஐக் கூட்டவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x-3y=24
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 4,8-இன் சிறிய பொது பெருக்கியான 8-ஆல் பெருக்கவும்.
10x-3y=72
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,2-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
2x-3y=24,10x-3y=72
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\72\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-3\times 10\right)}&-\frac{-3}{2\left(-3\right)-\left(-3\times 10\right)}\\-\frac{10}{2\left(-3\right)-\left(-3\times 10\right)}&\frac{2}{2\left(-3\right)-\left(-3\times 10\right)}\end{matrix}\right)\left(\begin{matrix}24\\72\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{1}{8}\\-\frac{5}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}24\\72\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 24+\frac{1}{8}\times 72\\-\frac{5}{12}\times 24+\frac{1}{12}\times 72\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=6,y=-4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x-3y=24
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 4,8-இன் சிறிய பொது பெருக்கியான 8-ஆல் பெருக்கவும்.
10x-3y=72
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,2-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
2x-3y=24,10x-3y=72
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x-10x-3y+3y=24-72
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x-3y=24-இலிருந்து 10x-3y=72-ஐக் கழிக்கவும்.
2x-10x=24-72
3y-க்கு -3y-ஐக் கூட்டவும். விதிகள் -3y மற்றும் 3y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-8x=24-72
-10x-க்கு 2x-ஐக் கூட்டவும்.
-8x=-48
-72-க்கு 24-ஐக் கூட்டவும்.
x=6
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
10\times 6-3y=72
10x-3y=72-இல் x-க்கு 6-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
60-3y=72
6-ஐ 10 முறை பெருக்கவும்.
-3y=12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 60-ஐக் கழிக்கவும்.
y=-4
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.