பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+4y=-6,4x+5y=9
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+4y=-6
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-4y-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
4\left(-4y-6\right)+5y=9
பிற சமன்பாடு 4x+5y=9-இல் x-க்கு -4y-6-ஐப் பிரதியிடவும்.
-16y-24+5y=9
-4y-6-ஐ 4 முறை பெருக்கவும்.
-11y-24=9
5y-க்கு -16y-ஐக் கூட்டவும்.
-11y=33
சமன்பாட்டின் இரு பக்கங்களிலும் 24-ஐக் கூட்டவும்.
y=-3
இரு பக்கங்களையும் -11-ஆல் வகுக்கவும்.
x=-4\left(-3\right)-6
x=-4y-6-இல் y-க்கு -3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=12-6
-3-ஐ -4 முறை பெருக்கவும்.
x=6
12-க்கு -6-ஐக் கூட்டவும்.
x=6,y=-3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+4y=-6,4x+5y=9
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&4\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\9\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}1&4\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
\left(\begin{matrix}1&4\\4&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-4\times 4}&-\frac{4}{5-4\times 4}\\-\frac{4}{5-4\times 4}&\frac{1}{5-4\times 4}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}&\frac{4}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}\left(-6\right)+\frac{4}{11}\times 9\\\frac{4}{11}\left(-6\right)-\frac{1}{11}\times 9\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=6,y=-3
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+4y=-6,4x+5y=9
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4x+4\times 4y=4\left(-6\right),4x+5y=9
x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
4x+16y=-24,4x+5y=9
எளிமையாக்கவும்.
4x-4x+16y-5y=-24-9
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 4x+16y=-24-இலிருந்து 4x+5y=9-ஐக் கழிக்கவும்.
16y-5y=-24-9
-4x-க்கு 4x-ஐக் கூட்டவும். விதிகள் 4x மற்றும் -4x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
11y=-24-9
-5y-க்கு 16y-ஐக் கூட்டவும்.
11y=-33
-9-க்கு -24-ஐக் கூட்டவும்.
y=-3
இரு பக்கங்களையும் 11-ஆல் வகுக்கவும்.
4x+5\left(-3\right)=9
4x+5y=9-இல் y-க்கு -3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x-15=9
-3-ஐ 5 முறை பெருக்கவும்.
4x=24
சமன்பாட்டின் இரு பக்கங்களிலும் 15-ஐக் கூட்டவும்.
x=6
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=6,y=-3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.