\left\{ \begin{array} { l } { x + y = 36 } \\ { \frac { 5 } { 7 } = \frac { x } { y } } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=15
y=21
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5y=7x
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி y ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 7,y-இன் சிறிய பொது பெருக்கியான 7y-ஆல் பெருக்கவும்.
5y-7x=0
இரு பக்கங்களில் இருந்தும் 7x-ஐக் கழிக்கவும்.
x+y=36,-7x+5y=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=36
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+36
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
-7\left(-y+36\right)+5y=0
பிற சமன்பாடு -7x+5y=0-இல் x-க்கு -y+36-ஐப் பிரதியிடவும்.
7y-252+5y=0
-y+36-ஐ -7 முறை பெருக்கவும்.
12y-252=0
5y-க்கு 7y-ஐக் கூட்டவும்.
12y=252
சமன்பாட்டின் இரு பக்கங்களிலும் 252-ஐக் கூட்டவும்.
y=21
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=-21+36
x=-y+36-இல் y-க்கு 21-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=15
-21-க்கு 36-ஐக் கூட்டவும்.
x=15,y=21
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5y=7x
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி y ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 7,y-இன் சிறிய பொது பெருக்கியான 7y-ஆல் பெருக்கவும்.
5y-7x=0
இரு பக்கங்களில் இருந்தும் 7x-ஐக் கழிக்கவும்.
x+y=36,-7x+5y=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\-7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\0\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}1&1\\-7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\-7&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-7\right)}&-\frac{1}{5-\left(-7\right)}\\-\frac{-7}{5-\left(-7\right)}&\frac{1}{5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}36\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{1}{12}\\\frac{7}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}36\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 36\\\frac{7}{12}\times 36\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\21\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=15,y=21
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5y=7x
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி y ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 7,y-இன் சிறிய பொது பெருக்கியான 7y-ஆல் பெருக்கவும்.
5y-7x=0
இரு பக்கங்களில் இருந்தும் 7x-ஐக் கழிக்கவும்.
x+y=36,-7x+5y=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-7x-7y=-7\times 36,-7x+5y=0
x மற்றும் -7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
-7x-7y=-252,-7x+5y=0
எளிமையாக்கவும்.
-7x+7x-7y-5y=-252
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -7x-7y=-252-இலிருந்து -7x+5y=0-ஐக் கழிக்கவும்.
-7y-5y=-252
7x-க்கு -7x-ஐக் கூட்டவும். விதிகள் -7x மற்றும் 7x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-12y=-252
-5y-க்கு -7y-ஐக் கூட்டவும்.
y=21
இரு பக்கங்களையும் -12-ஆல் வகுக்கவும்.
-7x+5\times 21=0
-7x+5y=0-இல் y-க்கு 21-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-7x+105=0
21-ஐ 5 முறை பெருக்கவும்.
-7x=-105
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 105-ஐக் கழிக்கவும்.
x=15
இரு பக்கங்களையும் -7-ஆல் வகுக்கவும்.
x=15,y=21
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}