\left\{ \begin{array} { l } { 3 x - 5 y = 6 } \\ { 6 x + 7 y = - 5 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=\frac{1}{3}\approx 0.333333333
y=-1
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
3x-5y=6,6x+7y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-5y=6
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=5y+6
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(5y+6\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{5}{3}y+2
5y+6-ஐ \frac{1}{3} முறை பெருக்கவும்.
6\left(\frac{5}{3}y+2\right)+7y=-5
பிற சமன்பாடு 6x+7y=-5-இல் x-க்கு \frac{5y}{3}+2-ஐப் பிரதியிடவும்.
10y+12+7y=-5
\frac{5y}{3}+2-ஐ 6 முறை பெருக்கவும்.
17y+12=-5
7y-க்கு 10y-ஐக் கூட்டவும்.
17y=-17
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
y=-1
இரு பக்கங்களையும் 17-ஆல் வகுக்கவும்.
x=\frac{5}{3}\left(-1\right)+2
x=\frac{5}{3}y+2-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{5}{3}+2
-1-ஐ \frac{5}{3} முறை பெருக்கவும்.
x=\frac{1}{3}
-\frac{5}{3}-க்கு 2-ஐக் கூட்டவும்.
x=\frac{1}{3},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-5y=6,6x+7y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-5\\6&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-5\\6&7\end{matrix}\right))\left(\begin{matrix}3&-5\\6&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&7\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
\left(\begin{matrix}3&-5\\6&7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&7\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&7\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-\left(-5\times 6\right)}&-\frac{-5}{3\times 7-\left(-5\times 6\right)}\\-\frac{6}{3\times 7-\left(-5\times 6\right)}&\frac{3}{3\times 7-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}6\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{51}&\frac{5}{51}\\-\frac{2}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{51}\times 6+\frac{5}{51}\left(-5\right)\\-\frac{2}{17}\times 6+\frac{1}{17}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{1}{3},y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-5y=6,6x+7y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\times 3x+6\left(-5\right)y=6\times 6,3\times 6x+3\times 7y=3\left(-5\right)
3x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
18x-30y=36,18x+21y=-15
எளிமையாக்கவும்.
18x-18x-30y-21y=36+15
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 18x-30y=36-இலிருந்து 18x+21y=-15-ஐக் கழிக்கவும்.
-30y-21y=36+15
-18x-க்கு 18x-ஐக் கூட்டவும். விதிகள் 18x மற்றும் -18x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-51y=36+15
-21y-க்கு -30y-ஐக் கூட்டவும்.
-51y=51
15-க்கு 36-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -51-ஆல் வகுக்கவும்.
6x+7\left(-1\right)=-5
6x+7y=-5-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x-7=-5
-1-ஐ 7 முறை பெருக்கவும்.
6x=2
சமன்பாட்டின் இரு பக்கங்களிலும் 7-ஐக் கூட்டவும்.
x=\frac{1}{3}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=\frac{1}{3},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}