பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x-y=5,4x+6y=24
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x-y=5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=y+5
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=\frac{1}{2}\left(y+5\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{1}{2}y+\frac{5}{2}
y+5-ஐ \frac{1}{2} முறை பெருக்கவும்.
4\left(\frac{1}{2}y+\frac{5}{2}\right)+6y=24
பிற சமன்பாடு 4x+6y=24-இல் x-க்கு \frac{5+y}{2}-ஐப் பிரதியிடவும்.
2y+10+6y=24
\frac{5+y}{2}-ஐ 4 முறை பெருக்கவும்.
8y+10=24
6y-க்கு 2y-ஐக் கூட்டவும்.
8y=14
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 10-ஐக் கழிக்கவும்.
y=\frac{7}{4}
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=\frac{1}{2}\times \frac{7}{4}+\frac{5}{2}
x=\frac{1}{2}y+\frac{5}{2}-இல் y-க்கு \frac{7}{4}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{7}{8}+\frac{5}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{7}{4}-ஐ \frac{1}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{27}{8}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{7}{8} உடன் \frac{5}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{27}{8},y=\frac{7}{4}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x-y=5,4x+6y=24
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{-1}{2\times 6-\left(-4\right)}\\-\frac{4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{16}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5+\frac{1}{16}\times 24\\-\frac{1}{4}\times 5+\frac{1}{8}\times 24\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{8}\\\frac{7}{4}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{27}{8},y=\frac{7}{4}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x-y=5,4x+6y=24
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 2x+4\left(-1\right)y=4\times 5,2\times 4x+2\times 6y=2\times 24
2x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
8x-4y=20,8x+12y=48
எளிமையாக்கவும்.
8x-8x-4y-12y=20-48
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 8x-4y=20-இலிருந்து 8x+12y=48-ஐக் கழிக்கவும்.
-4y-12y=20-48
-8x-க்கு 8x-ஐக் கூட்டவும். விதிகள் 8x மற்றும் -8x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-16y=20-48
-12y-க்கு -4y-ஐக் கூட்டவும்.
-16y=-28
-48-க்கு 20-ஐக் கூட்டவும்.
y=\frac{7}{4}
இரு பக்கங்களையும் -16-ஆல் வகுக்கவும்.
4x+6\times \frac{7}{4}=24
4x+6y=24-இல் y-க்கு \frac{7}{4}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x+\frac{21}{2}=24
\frac{7}{4}-ஐ 6 முறை பெருக்கவும்.
4x=\frac{27}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{21}{2}-ஐக் கழிக்கவும்.
x=\frac{27}{8}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{27}{8},y=\frac{7}{4}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.