பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x-2\left(y+1\right)=6
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 2,3-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
3x-2y-2=6
-2-ஐ y+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x-2y=6+2
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
3x-2y=8
6 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 8.
3x-2y=8,3x+2y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-2y=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=2y+8
சமன்பாட்டின் இரு பக்கங்களிலும் 2y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(2y+8\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{2}{3}y+\frac{8}{3}
8+2y-ஐ \frac{1}{3} முறை பெருக்கவும்.
3\left(\frac{2}{3}y+\frac{8}{3}\right)+2y=4
பிற சமன்பாடு 3x+2y=4-இல் x-க்கு \frac{8+2y}{3}-ஐப் பிரதியிடவும்.
2y+8+2y=4
\frac{8+2y}{3}-ஐ 3 முறை பெருக்கவும்.
4y+8=4
2y-க்கு 2y-ஐக் கூட்டவும்.
4y=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
y=-1
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{2}{3}\left(-1\right)+\frac{8}{3}
x=\frac{2}{3}y+\frac{8}{3}-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-2+8}{3}
-1-ஐ \frac{2}{3} முறை பெருக்கவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{2}{3} உடன் \frac{8}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-2\left(y+1\right)=6
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 2,3-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
3x-2y-2=6
-2-ஐ y+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x-2y=6+2
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
3x-2y=8
6 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 8.
3x-2y=8,3x+2y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\times 3\right)}&-\frac{-2}{3\times 2-\left(-2\times 3\right)}\\-\frac{3}{3\times 2-\left(-2\times 3\right)}&\frac{3}{3\times 2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 8+\frac{1}{6}\times 4\\-\frac{1}{4}\times 8+\frac{1}{4}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-2\left(y+1\right)=6
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 2,3-இன் சிறிய பொது பெருக்கியான 6-ஆல் பெருக்கவும்.
3x-2y-2=6
-2-ஐ y+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x-2y=6+2
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
3x-2y=8
6 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 8.
3x-2y=8,3x+2y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3x-3x-2y-2y=8-4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 3x-2y=8-இலிருந்து 3x+2y=4-ஐக் கழிக்கவும்.
-2y-2y=8-4
-3x-க்கு 3x-ஐக் கூட்டவும். விதிகள் 3x மற்றும் -3x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-4y=8-4
-2y-க்கு -2y-ஐக் கூட்டவும்.
-4y=4
-4-க்கு 8-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
3x+2\left(-1\right)=4
3x+2y=4-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-2=4
-1-ஐ 2 முறை பெருக்கவும்.
3x=6
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
x=2
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=2,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.