\left\{ \begin{array} { c } { 2 x + 5 y = 8 } \\ { x - 3 y = 3 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x = \frac{39}{11} = 3\frac{6}{11} \approx 3.545454545
y=\frac{2}{11}\approx 0.181818182
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2x+5y=8,x-3y=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+5y=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-5y+8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-5y+8\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{5}{2}y+4
-5y+8-ஐ \frac{1}{2} முறை பெருக்கவும்.
-\frac{5}{2}y+4-3y=3
பிற சமன்பாடு x-3y=3-இல் x-க்கு -\frac{5y}{2}+4-ஐப் பிரதியிடவும்.
-\frac{11}{2}y+4=3
-3y-க்கு -\frac{5y}{2}-ஐக் கூட்டவும்.
-\frac{11}{2}y=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
y=\frac{2}{11}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{11}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{5}{2}\times \frac{2}{11}+4
x=-\frac{5}{2}y+4-இல் y-க்கு \frac{2}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{5}{11}+4
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{2}{11}-ஐ -\frac{5}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{39}{11}
-\frac{5}{11}-க்கு 4-ஐக் கூட்டவும்.
x=\frac{39}{11},y=\frac{2}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+5y=8,x-3y=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-5}&-\frac{5}{2\left(-3\right)-5}\\-\frac{1}{2\left(-3\right)-5}&\frac{2}{2\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 8+\frac{5}{11}\times 3\\\frac{1}{11}\times 8-\frac{2}{11}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{11}\\\frac{2}{11}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{39}{11},y=\frac{2}{11}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+5y=8,x-3y=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x+5y=8,2x+2\left(-3\right)y=2\times 3
2x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
2x+5y=8,2x-6y=6
எளிமையாக்கவும்.
2x-2x+5y+6y=8-6
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x+5y=8-இலிருந்து 2x-6y=6-ஐக் கழிக்கவும்.
5y+6y=8-6
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
11y=8-6
6y-க்கு 5y-ஐக் கூட்டவும்.
11y=2
-6-க்கு 8-ஐக் கூட்டவும்.
y=\frac{2}{11}
இரு பக்கங்களையும் 11-ஆல் வகுக்கவும்.
x-3\times \frac{2}{11}=3
x-3y=3-இல் y-க்கு \frac{2}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x-\frac{6}{11}=3
\frac{2}{11}-ஐ -3 முறை பெருக்கவும்.
x=\frac{39}{11}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{6}{11}-ஐக் கூட்டவும்.
x=\frac{39}{11},y=\frac{2}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}