பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int _{0}^{2}2x^{2}-x^{3}\mathrm{d}x
x^{2}-ஐ 2-x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int 2x^{2}-x^{3}\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int 2x^{2}\mathrm{d}x+\int -x^{3}\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
2\int x^{2}\mathrm{d}x-\int x^{3}\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{2x^{3}}{3}-\int x^{3}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{3}}{3}-ஐ 2 முறை பெருக்கவும்.
\frac{2x^{3}}{3}-\frac{x^{4}}{4}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{4}}{4}-ஐ -1 முறை பெருக்கவும்.
\frac{2}{3}\times 2^{3}-\frac{2^{4}}{4}-\left(\frac{2}{3}\times 0^{3}-\frac{0^{4}}{4}\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{4}{3}
எளிமையாக்கவும்.