பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int -3x^{2}+11x+25\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int -3x^{2}\mathrm{d}x+\int 11x\mathrm{d}x+\int 25\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
-3\int x^{2}\mathrm{d}x+11\int x\mathrm{d}x+\int 25\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
-x^{3}+11\int x\mathrm{d}x+\int 25\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{3}}{3}-ஐ -3 முறை பெருக்கவும்.
-x^{3}+\frac{11x^{2}}{2}+\int 25\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ 11 முறை பெருக்கவும்.
-x^{3}+\frac{11x^{2}}{2}+25x
பொதுவான தொகையீடுகள் விதியின் அட்டவணை \int a\mathrm{d}x=ax-ஐப் பயன்படுத்தி 25-இன் தொகையீட்டைக் கண்டுபிடிக்கவும்.
-5^{3}+\frac{11}{2}\times 5^{2}+25\times 5-\left(-\left(-1.5\right)^{3}+\frac{11}{2}\left(-1.5\right)^{2}+25\left(-1.5\right)\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{637}{4}
எளிமையாக்கவும்.