மதிப்பிடவும்
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
x குறித்து வகையிடவும்
16\left(7x^{6}+1\right)\left(x^{7}+x+1\right)
வினாடி வினா
Integration
இதற்கு ஒத்த 5 கணக்குகள்:
\int ( 4 x ^ { 7 } + 4 x + 4 ) ( 28 x ^ { 6 } + 4 ) d x
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
4x^{7}+4x+4-ஐ 28x^{6}+4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{14}}{14}-ஐ \int x^{13}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{14}}{14}-ஐ 112 முறை பெருக்கவும்.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{8}}{8}-ஐ \int x^{7}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{8}}{8}-ஐ 128 முறை பெருக்கவும்.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ 16 முறை பெருக்கவும்.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{7}}{7}-ஐ \int x^{6}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{7}}{7}-ஐ 112 முறை பெருக்கவும்.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
பொதுவான தொகையீடுகள் விதியின் அட்டவணை \int a\mathrm{d}x=ax-ஐப் பயன்படுத்தி 16-இன் தொகையீட்டைக் கண்டுபிடிக்கவும்.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
f\left(x\right)-இன் எதிர்வகைக்கெழுவாக F\left(x\right) இருக்கிறது எனில், f\left(x\right)-இன் அனைத்து எதிர்வகைக்கெழுக்களின் தொகுப்பு, F\left(x\right)+C-ஆள் வழங்கப்படும். எனவே முடிவில் தொகையீட்டு மாறிலி C\in \mathrm{R}-ஐச் சேர்க்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}