பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int 2x^{4}-6x^{3}+5x^{2}-15x\mathrm{d}x
2x^{2}+5-ஐ x^{2}-3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int 2x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -15x\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
2\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{2x^{5}}{5}-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{5}}{5}-ஐ \int x^{4}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{5}}{5}-ஐ 2 முறை பெருக்கவும்.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{4}}{4}-ஐ -6 முறை பெருக்கவும்.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-15\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{3}}{3}-ஐ 5 முறை பெருக்கவும்.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ -15 முறை பெருக்கவும்.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}+С
f\left(x\right)-இன் எதிர்வகைக்கெழுவாக F\left(x\right) இருக்கிறது எனில், f\left(x\right)-இன் அனைத்து எதிர்வகைக்கெழுக்களின் தொகுப்பு, F\left(x\right)+C-ஆள் வழங்கப்படும். எனவே முடிவில் தொகையீட்டு மாறிலி C\in \mathrm{R}-ஐச் சேர்க்கவும்.