பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3\left(x+y\right)+2=3xy+y\times 2
சமன்பாட்டின் இரு பக்கங்களையும் y-ஆல் பெருக்கவும்.
3x+3y+2=3xy+y\times 2
3-ஐ x+y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x+3y+2-3xy=y\times 2
இரு பக்கங்களில் இருந்தும் 3xy-ஐக் கழிக்கவும்.
3x+2-3xy=y\times 2-3y
இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
3x+2-3xy=-y
y\times 2 மற்றும் -3y-ஐ இணைத்தால், தீர்வு -y.
3x-3xy=-y-2
இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
\left(3-3y\right)x=-y-2
x உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\frac{\left(3-3y\right)x}{3-3y}=\frac{-y-2}{3-3y}
இரு பக்கங்களையும் -3y+3-ஆல் வகுக்கவும்.
x=\frac{-y-2}{3-3y}
-3y+3-ஆல் வகுத்தல் -3y+3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x=-\frac{y+2}{3\left(1-y\right)}
-y-2-ஐ -3y+3-ஆல் வகுக்கவும்.
3\left(x+y\right)+2=3xy+y\times 2
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி y ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் y-ஆல் பெருக்கவும்.
3x+3y+2=3xy+y\times 2
3-ஐ x+y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x+3y+2-3xy=y\times 2
இரு பக்கங்களில் இருந்தும் 3xy-ஐக் கழிக்கவும்.
3x+3y+2-3xy-y\times 2=0
இரு பக்கங்களில் இருந்தும் y\times 2-ஐக் கழிக்கவும்.
3x+y+2-3xy=0
3y மற்றும் -y\times 2-ஐ இணைத்தால், தீர்வு y.
y+2-3xy=-3x
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
y-3xy=-3x-2
இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
\left(1-3x\right)y=-3x-2
y உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\frac{\left(1-3x\right)y}{1-3x}=\frac{-3x-2}{1-3x}
இரு பக்கங்களையும் 1-3x-ஆல் வகுக்கவும்.
y=\frac{-3x-2}{1-3x}
1-3x-ஆல் வகுத்தல் 1-3x-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
y=-\frac{3x+2}{1-3x}
-3x-2-ஐ 1-3x-ஆல் வகுக்கவும்.
y=-\frac{3x+2}{1-3x}\text{, }y\neq 0
மாறி y ஆனது 0-க்குச் சமமாக இருக்க முடியாது.