பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}-8=8
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x+4-ஆல் பெருக்கவும்.
x^{2}-8-8=0
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
x^{2}-16=0
-8-இலிருந்து 8-ஐக் கழிக்கவும், தீர்வு -16.
\left(x-4\right)\left(x+4\right)=0
x^{2}-16-ஐக் கருத்தில் கொள்ளவும். x^{2}-16 என்பதை x^{2}-4^{2} என மீண்டும் எழுதவும். வர்க்கங்களின் வேறுபாட்டை இந்த விதியைப் பயன்படுத்தி காரணிப்படுத்தலாம்: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-4=0 மற்றும் x+4=0-ஐத் தீர்க்கவும்.
x=4
மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது.
x^{2}-8=8
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x+4-ஆல் பெருக்கவும்.
x^{2}=8+8
இரண்டு பக்கங்களிலும் 8-ஐச் சேர்க்கவும்.
x^{2}=16
8 மற்றும் 8-ஐக் கூட்டவும், தீர்வு 16.
x=4 x=-4
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x=4
மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது.
x^{2}-8=8
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x+4-ஆல் பெருக்கவும்.
x^{2}-8-8=0
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
x^{2}-16=0
-8-இலிருந்து 8-ஐக் கழிக்கவும், தீர்வு -16.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 0 மற்றும் c-க்குப் பதிலாக -16-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{0±\sqrt{-4\left(-16\right)}}{2}
0-ஐ வர்க்கமாக்கவும்.
x=\frac{0±\sqrt{64}}{2}
-16-ஐ -4 முறை பெருக்கவும்.
x=\frac{0±8}{2}
64-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=4
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{0±8}{2}-ஐத் தீர்க்கவும். 8-ஐ 2-ஆல் வகுக்கவும்.
x=-4
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{0±8}{2}-ஐத் தீர்க்கவும். -8-ஐ 2-ஆல் வகுக்கவும்.
x=4 x=-4
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x=4
மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது.