பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,1 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+1,x-1-இன் சிறிய பொது பெருக்கியான \left(x-1\right)\left(x+1\right)-ஆல் பெருக்கவும்.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1-ஐ 2x-3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1-ஐ 2x-5-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
2x^{2} மற்றும் 2x^{2}-ஐ இணைத்தால், தீர்வு 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-5x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
3-இலிருந்து 5-ஐக் கழிக்கவும், தீர்வு -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-8x-2=2x^{2}-2
2x-2-ஐ x+1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-8x-2-2x^{2}=-2
இரு பக்கங்களில் இருந்தும் 2x^{2}-ஐக் கழிக்கவும்.
2x^{2}-8x-2=-2
4x^{2} மற்றும் -2x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-8x-2+2=0
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
2x^{2}-8x=0
-2 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -8 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-8\right)±8}{2\times 2}
\left(-8\right)^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8±8}{2\times 2}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{8±8}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{16}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{8±8}{4}-ஐத் தீர்க்கவும். 8-க்கு 8-ஐக் கூட்டவும்.
x=4
16-ஐ 4-ஆல் வகுக்கவும்.
x=\frac{0}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{8±8}{4}-ஐத் தீர்க்கவும். 8–இலிருந்து 8–ஐக் கழிக்கவும்.
x=0
0-ஐ 4-ஆல் வகுக்கவும்.
x=4 x=0
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,1 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+1,x-1-இன் சிறிய பொது பெருக்கியான \left(x-1\right)\left(x+1\right)-ஆல் பெருக்கவும்.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1-ஐ 2x-3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1-ஐ 2x-5-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
2x^{2} மற்றும் 2x^{2}-ஐ இணைத்தால், தீர்வு 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-5x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
3-இலிருந்து 5-ஐக் கழிக்கவும், தீர்வு -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-8x-2=2x^{2}-2
2x-2-ஐ x+1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-8x-2-2x^{2}=-2
இரு பக்கங்களில் இருந்தும் 2x^{2}-ஐக் கழிக்கவும்.
2x^{2}-8x-2=-2
4x^{2} மற்றும் -2x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-8x=-2+2
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
2x^{2}-8x=0
-2 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 0.
\frac{2x^{2}-8x}{2}=\frac{0}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{0}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-4x=\frac{0}{2}
-8-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-4x=0
0-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-2-ஐப் பெற, x உறுப்பின் ஈவான -4-ஐ 2-ஆல் வகுக்கவும். பிறகு -2-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-4x+4=4
-2-ஐ வர்க்கமாக்கவும்.
\left(x-2\right)^{2}=4
காரணி x^{2}-4x+4. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-2=2 x-2=-2
எளிமையாக்கவும்.
x=4 x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.