பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{10x}{x\left(x+3\right)}-\frac{11\left(x+3\right)}{x\left(x+3\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x+3 மற்றும் x-க்கு இடையிலான மீச்சிறு பெருக்கி x\left(x+3\right) ஆகும். \frac{x}{x}-ஐ \frac{10}{x+3} முறை பெருக்கவும். \frac{x+3}{x+3}-ஐ \frac{11}{x} முறை பெருக்கவும்.
\frac{10x-11\left(x+3\right)}{x\left(x+3\right)}
\frac{10x}{x\left(x+3\right)} மற்றும் \frac{11\left(x+3\right)}{x\left(x+3\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{10x-11x-33}{x\left(x+3\right)}
10x-11\left(x+3\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-x-33}{x\left(x+3\right)}
10x-11x-33-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-x-33}{x^{2}+3x}
x\left(x+3\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x}{x\left(x+3\right)}-\frac{11\left(x+3\right)}{x\left(x+3\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x+3 மற்றும் x-க்கு இடையிலான மீச்சிறு பெருக்கி x\left(x+3\right) ஆகும். \frac{x}{x}-ஐ \frac{10}{x+3} முறை பெருக்கவும். \frac{x+3}{x+3}-ஐ \frac{11}{x} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x-11\left(x+3\right)}{x\left(x+3\right)})
\frac{10x}{x\left(x+3\right)} மற்றும் \frac{11\left(x+3\right)}{x\left(x+3\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x-11x-33}{x\left(x+3\right)})
10x-11\left(x+3\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-33}{x\left(x+3\right)})
10x-11x-33-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-33}{x^{2}+3x})
x-ஐ x+3-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\left(x^{2}+3x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-33)-\left(-x^{1}-33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+3x^{1})}{\left(x^{2}+3x^{1}\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{2}+3x^{1}\right)\left(-1\right)x^{1-1}-\left(-x^{1}-33\right)\left(2x^{2-1}+3x^{1-1}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{2}+3x^{1}\right)\left(-1\right)x^{0}-\left(-x^{1}-33\right)\left(2x^{1}+3x^{0}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}\left(-1\right)x^{0}+3x^{1}\left(-1\right)x^{0}-\left(-x^{1}-33\right)\left(2x^{1}+3x^{0}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
-x^{0}-ஐ x^{2}+3x^{1} முறை பெருக்கவும்.
\frac{x^{2}\left(-1\right)x^{0}+3x^{1}\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\times 3x^{0}-33\times 2x^{1}-33\times 3x^{0}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
2x^{1}+3x^{0}-ஐ -x^{1}-33 முறை பெருக்கவும்.
\frac{-x^{2}+3\left(-1\right)x^{1}-\left(-2x^{1+1}-3x^{1}-33\times 2x^{1}-33\times 3x^{0}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{-x^{2}-3x^{1}-\left(-2x^{2}-3x^{1}-66x^{1}-99x^{0}\right)}{\left(x^{2}+3x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}+66x^{1}+99x^{0}}{\left(x^{2}+3x^{1}\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{x^{2}+66x+99x^{0}}{\left(x^{2}+3x\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{x^{2}+66x+99\times 1}{\left(x^{2}+3x\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.
\frac{x^{2}+66x+99}{\left(x^{2}+3x\right)^{2}}
t, t\times 1=t மற்றும் 1t=t எந்தவொரு சொல்லுக்கும்.