x-க்காகத் தீர்க்கவும்
x=1
x=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
10+\left(x-5\right)x=\left(x+1\right)\times 3
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,5 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் \left(x-5\right)\left(x+1\right),x+1,x-5-இன் சிறிய பொது பெருக்கியான \left(x-5\right)\left(x+1\right)-ஆல் பெருக்கவும்.
10+x^{2}-5x=\left(x+1\right)\times 3
x-5-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
10+x^{2}-5x=3x+3
x+1-ஐ 3-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
10+x^{2}-5x-3x=3
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
10+x^{2}-8x=3
-5x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -8x.
10+x^{2}-8x-3=0
இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
7+x^{2}-8x=0
10-இலிருந்து 3-ஐக் கழிக்கவும், தீர்வு 7.
x^{2}-8x+7=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -8 மற்றும் c-க்குப் பதிலாக 7-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
7-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
-28-க்கு 64-ஐக் கூட்டவும்.
x=\frac{-\left(-8\right)±6}{2}
36-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8±6}{2}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{14}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{8±6}{2}-ஐத் தீர்க்கவும். 6-க்கு 8-ஐக் கூட்டவும்.
x=7
14-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{2}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{8±6}{2}-ஐத் தீர்க்கவும். 8–இலிருந்து 6–ஐக் கழிக்கவும்.
x=1
2-ஐ 2-ஆல் வகுக்கவும்.
x=7 x=1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
10+\left(x-5\right)x=\left(x+1\right)\times 3
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,5 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் \left(x-5\right)\left(x+1\right),x+1,x-5-இன் சிறிய பொது பெருக்கியான \left(x-5\right)\left(x+1\right)-ஆல் பெருக்கவும்.
10+x^{2}-5x=\left(x+1\right)\times 3
x-5-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
10+x^{2}-5x=3x+3
x+1-ஐ 3-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
10+x^{2}-5x-3x=3
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
10+x^{2}-8x=3
-5x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -8x.
x^{2}-8x=3-10
இரு பக்கங்களில் இருந்தும் 10-ஐக் கழிக்கவும்.
x^{2}-8x=-7
3-இலிருந்து 10-ஐக் கழிக்கவும், தீர்வு -7.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
-4-ஐப் பெற, x உறுப்பின் ஈவான -8-ஐ 2-ஆல் வகுக்கவும். பிறகு -4-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-8x+16=-7+16
-4-ஐ வர்க்கமாக்கவும்.
x^{2}-8x+16=9
16-க்கு -7-ஐக் கூட்டவும்.
\left(x-4\right)^{2}=9
காரணி x^{2}-8x+16. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-4=3 x-4=-3
எளிமையாக்கவும்.
x=7 x=1
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}