பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
t குறித்து வகையிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{1}{t\left(t-\frac{2}{t}\right)}
\frac{\frac{1}{t}}{t-\frac{2}{t}}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{t}{t}-ஐ t முறை பெருக்கவும்.
\frac{1}{t\times \frac{tt-2}{t}}
\frac{tt}{t} மற்றும் \frac{2}{t} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{1}{t\times \frac{t^{2}-2}{t}}
tt-2 இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{1}{t^{2}-2}
t மற்றும் t-ஐ ரத்துசெய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(t-\frac{2}{t}\right)})
\frac{\frac{1}{t}}{t-\frac{2}{t}}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{t}{t}-ஐ t முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{tt-2}{t}})
\frac{tt}{t} மற்றும் \frac{2}{t} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{t^{2}-2}{t}})
tt-2 இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t^{2}-2})
t மற்றும் t-ஐ ரத்துசெய்யவும்.
-\left(t^{2}-2\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-2)
F ஆனது f\left(u\right) மற்றும் u=g\left(x\right) ஆகிய இரண்டு வகையிடக்கூடிய சார்புகளின் தொகுப்பாக இருந்தால், அதாவது F\left(x\right)=f\left(g\left(x\right)\right) என்றால், F-இன் வகைக்கெழு என்பது u-ஐப் பொறுத்து f-இன் வகைக்கெழுவையும் x-ஐப் பொறுத்து g-இன் வகைக்கெழுவையும் பெருக்க வரும் மதிப்பாகும், அதாவது \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(t^{2}-2\right)^{-2}\times 2t^{2-1}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
-2t^{1}\left(t^{2}-2\right)^{-2}
எளிமையாக்கவும்.
-2t\left(t^{2}-2\right)^{-2}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.