Lös ut x (complex solution)
x=-\sqrt{1+e^{z}-y^{2}}
x=\sqrt{1+e^{z}-y^{2}}\text{, }Im(\ln(e^{z}))-Im(z)=0
Lös ut y (complex solution)
y=-\sqrt{1+e^{z}-x^{2}}
y=\sqrt{1+e^{z}-x^{2}}\text{, }Im(\ln(e^{z}))-Im(z)=0
Lös ut x
\left\{\begin{matrix}x=-\sqrt{1+e^{z}-y^{2}}\text{, }&\left(y\leq \sqrt{e^{z}+1}\text{ and }y>1\text{ and }y\geq e^{\frac{z}{2}}\text{ and }-\sqrt{1+e^{z}-y^{2}}\geq -1\right)\text{ or }\left(y\leq \sqrt{e^{z}+1}\text{ and }-\sqrt{1+e^{z}-y^{2}}<-1\text{ and }y>1\right)\text{ or }\left(y\geq -\sqrt{e^{z}+1}\text{ and }-\sqrt{1+e^{z}-y^{2}}<-1\text{ and }y<-1\right)\text{ or }\left(y\geq -\sqrt{e^{z}+1}\text{ and }y<-1\text{ and }y<-\sqrt{y^{2}-e^{z}}\text{ and }z\leq \ln(y^{2})\text{ and }-\sqrt{1+e^{z}-y^{2}}\geq -1\right)\\x=\sqrt{1+e^{z}-y^{2}}\text{, }&\left(y\leq \sqrt{e^{z}+1}\text{ and }y>1\text{ and }y\geq e^{\frac{z}{2}}\text{ and }\sqrt{1+e^{z}-y^{2}}\leq 1\right)\text{ or }\left(y\leq \sqrt{e^{z}+1}\text{ and }\sqrt{1+e^{z}-y^{2}}>1\text{ and }y>1\right)\text{ or }\left(y\geq -\sqrt{e^{z}+1}\text{ and }\sqrt{1+e^{z}-y^{2}}>1\text{ and }y<-1\right)\text{ or }\left(y\geq -\sqrt{e^{z}+1}\text{ and }y<-1\text{ and }y<-\sqrt{y^{2}-e^{z}}\text{ and }z\leq \ln(y^{2})\text{ and }\sqrt{1+e^{z}-y^{2}}\leq 1\right)\end{matrix}\right,
Lös ut y
\left\{\begin{matrix}y=-\sqrt{1+e^{z}-x^{2}}\text{, }&\left(x\leq \sqrt{e^{z}+1}\text{ and }x>1\text{ and }x\geq e^{\frac{z}{2}}\text{ and }-\sqrt{1+e^{z}-x^{2}}\geq -1\right)\text{ or }\left(x\leq \sqrt{e^{z}+1}\text{ and }-\sqrt{1+e^{z}-x^{2}}<-1\text{ and }x>1\right)\text{ or }\left(x\geq -\sqrt{e^{z}+1}\text{ and }-\sqrt{1+e^{z}-x^{2}}<-1\text{ and }x<-1\right)\text{ or }\left(x\geq -\sqrt{e^{z}+1}\text{ and }x<-1\text{ and }x<-\sqrt{x^{2}-e^{z}}\text{ and }z\leq \ln(x^{2})\text{ and }-\sqrt{1+e^{z}-x^{2}}\geq -1\right)\\y=\sqrt{1+e^{z}-x^{2}}\text{, }&\left(x\leq \sqrt{e^{z}+1}\text{ and }x>1\text{ and }x\geq e^{\frac{z}{2}}\text{ and }\sqrt{1+e^{z}-x^{2}}\leq 1\right)\text{ or }\left(x\leq \sqrt{e^{z}+1}\text{ and }\sqrt{1+e^{z}-x^{2}}>1\text{ and }x>1\right)\text{ or }\left(x\geq -\sqrt{e^{z}+1}\text{ and }\sqrt{1+e^{z}-x^{2}}>1\text{ and }x<-1\right)\text{ or }\left(x\geq -\sqrt{e^{z}+1}\text{ and }x<-1\text{ and }x<-\sqrt{x^{2}-e^{z}}\text{ and }z\leq \ln(x^{2})\text{ and }\sqrt{1+e^{z}-x^{2}}\leq 1\right)\end{matrix}\right,
Aktie
Kopieras till Urklipp
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}