Lös ut c (complex solution)
c=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
Lös ut c
c=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
|y|\geq 1
Lös ut x (complex solution)
\left\{\begin{matrix}x=\ln(\frac{y_{t}\sqrt{y^{2}-1}}{c})+2\pi n_{1}i\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 1\text{ and }y\neq -1\text{ and }y_{t}\neq 0\text{ and }c\neq 0\\x\in \mathrm{C}\text{, }&\left(y_{t}=0\text{ or }y=-1\text{ or }y=1\right)\text{ and }c=0\end{matrix}\right,
Lös ut x
\left\{\begin{matrix}x=\ln(\frac{y_{t}\sqrt{y^{2}-1}}{c})\text{, }&\left(y_{t}>0\text{ and }c>0\text{ and }|y|>1\right)\text{ or }\left(y_{t}<0\text{ and }c<0\text{ and }|y|>1\right)\\x\in \mathrm{R}\text{, }&|y|\geq 1\text{ and }\left(|y|=1\text{ or }y_{t}=0\right)\text{ and }c=0\end{matrix}\right,
Graf
Aktie
Kopieras till Urklipp
ce^{x}=y_{t}\sqrt{y^{2}-1}
Byt plats på leden så att alla variabeltermer är till vänster.
e^{x}c=y_{t}\sqrt{y^{2}-1}
Ekvationen är på standardform.
\frac{e^{x}c}{e^{x}}=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
Dividera båda led med e^{x}.
c=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
Division med e^{x} tar ut multiplikationen med e^{x}.
ce^{x}=y_{t}\sqrt{y^{2}-1}
Byt plats på leden så att alla variabeltermer är till vänster.
e^{x}c=y_{t}\sqrt{y^{2}-1}
Ekvationen är på standardform.
\frac{e^{x}c}{e^{x}}=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
Dividera båda led med e^{x}.
c=\frac{y_{t}\sqrt{y^{2}-1}}{e^{x}}
Division med e^{x} tar ut multiplikationen med e^{x}.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}