Hoppa till huvudinnehåll
Lös ut x (complex solution)
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

3x^{2}+5x+6=0
Slå ihop x^{2} och 2x^{2} för att få 3x^{2}.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 3, b med 5 och c med 6 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
Kvadrera 5.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
Multiplicera -4 med 3.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
Multiplicera -12 med 6.
x=\frac{-5±\sqrt{-47}}{2\times 3}
Addera 25 till -72.
x=\frac{-5±\sqrt{47}i}{2\times 3}
Dra kvadratroten ur -47.
x=\frac{-5±\sqrt{47}i}{6}
Multiplicera 2 med 3.
x=\frac{-5+\sqrt{47}i}{6}
Lös nu ekvationen x=\frac{-5±\sqrt{47}i}{6} när ± är plus. Addera -5 till i\sqrt{47}.
x=\frac{-\sqrt{47}i-5}{6}
Lös nu ekvationen x=\frac{-5±\sqrt{47}i}{6} när ± är minus. Subtrahera i\sqrt{47} från -5.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Ekvationen har lösts.
3x^{2}+5x+6=0
Slå ihop x^{2} och 2x^{2} för att få 3x^{2}.
3x^{2}+5x=-6
Subtrahera 6 från båda led. Allt subtraherat från noll blir sin negation.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
Dividera båda led med 3.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
Division med 3 tar ut multiplikationen med 3.
x^{2}+\frac{5}{3}x=-2
Dela -6 med 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
Dividera \frac{5}{3}, koefficienten för termen x, med 2 för att få \frac{5}{6}. Addera sedan kvadraten av \frac{5}{6} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
Kvadrera \frac{5}{6} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
Addera -2 till \frac{25}{36}.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
Faktorisera x^{2}+\frac{5}{3}x+\frac{25}{36}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
Dra kvadratroten ur båda ekvationsled.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
Förenkla.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Subtrahera \frac{5}{6} från båda ekvationsled.