Hoppa till huvudinnehåll
Lös ut a
Tick mark Image

Liknande problem från webbsökning

Aktie

a^{2}-a-1=0
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -1 och c med -1 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Multiplicera -4 med -1.
a=\frac{-\left(-1\right)±\sqrt{5}}{2}
Addera 1 till 4.
a=\frac{1±\sqrt{5}}{2}
Motsatsen till -1 är 1.
a=\frac{\sqrt{5}+1}{2}
Lös nu ekvationen a=\frac{1±\sqrt{5}}{2} när ± är plus. Addera 1 till \sqrt{5}.
a=\frac{1-\sqrt{5}}{2}
Lös nu ekvationen a=\frac{1±\sqrt{5}}{2} när ± är minus. Subtrahera \sqrt{5} från 1.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
Ekvationen har lösts.
a^{2}-a-1=0
Andragradsekvationer som den här kan lösas med hjälp av kvadratkomplettering. För kvadratkomplettering måste ekvationen först skrivas om på formen x^{2}+bx=c.
a^{2}-a-1-\left(-1\right)=-\left(-1\right)
Addera 1 till båda ekvationsled.
a^{2}-a=-\left(-1\right)
Subtraktion av -1 från sig självt ger 0 som resultat.
a^{2}-a=1
Subtrahera -1 från 0.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Dividera -1, koefficienten för termen x, med 2 för att få -\frac{1}{2}. Addera sedan kvadraten av -\frac{1}{2} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
a^{2}-a+\frac{1}{4}=1+\frac{1}{4}
Kvadrera -\frac{1}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
a^{2}-a+\frac{1}{4}=\frac{5}{4}
Addera 1 till \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=\frac{5}{4}
Faktorisera a^{2}-a+\frac{1}{4}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Dra kvadratroten ur båda ekvationsled.
a-\frac{1}{2}=\frac{\sqrt{5}}{2} a-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Förenkla.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
Addera \frac{1}{2} till båda ekvationsled.