Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

-x^{2}+3x+4
Skriv om polynomen på standardform. Ordna termerna från högsta till lägsta grad.
a+b=3 ab=-4=-4
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som -x^{2}+ax+bx+4. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,4 -2,2
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är positivt har det positiva talet större absolut värde än det negativa. Lista alla sådana heltalspar som ger produkten -4.
-1+4=3 -2+2=0
Beräkna summan för varje par.
a=4 b=-1
Lösningen är det par som ger Summa 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Skriv om -x^{2}+3x+4 som \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Utfaktor -x i den första och den -1 i den andra gruppen.
\left(x-4\right)\left(-x-1\right)
Bryt ut den gemensamma termen x-4 genom att använda distributivitet.
-x^{2}+3x+4=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kvadrera 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Multiplicera -4 med -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Multiplicera 4 med 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Addera 9 till 16.
x=\frac{-3±5}{2\left(-1\right)}
Dra kvadratroten ur 25.
x=\frac{-3±5}{-2}
Multiplicera 2 med -1.
x=\frac{2}{-2}
Lös nu ekvationen x=\frac{-3±5}{-2} när ± är plus. Addera -3 till 5.
x=-1
Dela 2 med -2.
x=-\frac{8}{-2}
Lös nu ekvationen x=\frac{-3±5}{-2} när ± är minus. Subtrahera 5 från -3.
x=4
Dela -8 med -2.
-x^{2}+3x+4=-\left(x-\left(-1\right)\right)\left(x-4\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med -1 och x_{2} med 4.
-x^{2}+3x+4=-\left(x+1\right)\left(x-4\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.