Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

36=x^{2}-5x
Använd den distributiva egenskapen för att multiplicera x med x-5.
x^{2}-5x=36
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}-5x-36=0
Subtrahera 36 från båda led.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -5 och c med -36 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Kvadrera -5.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Multiplicera -4 med -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Addera 25 till 144.
x=\frac{-\left(-5\right)±13}{2}
Dra kvadratroten ur 169.
x=\frac{5±13}{2}
Motsatsen till -5 är 5.
x=\frac{18}{2}
Lös nu ekvationen x=\frac{5±13}{2} när ± är plus. Addera 5 till 13.
x=9
Dela 18 med 2.
x=-\frac{8}{2}
Lös nu ekvationen x=\frac{5±13}{2} när ± är minus. Subtrahera 13 från 5.
x=-4
Dela -8 med 2.
x=9 x=-4
Ekvationen har lösts.
36=x^{2}-5x
Använd den distributiva egenskapen för att multiplicera x med x-5.
x^{2}-5x=36
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Dividera -5, koefficienten för termen x, med 2 för att få -\frac{5}{2}. Addera sedan kvadraten av -\frac{5}{2} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Kvadrera -\frac{5}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Addera 36 till \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Faktorisera x^{2}-5x+\frac{25}{4}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Förenkla.
x=9 x=-4
Addera \frac{5}{2} till båda ekvationsled.