Lös ut x (complex solution)
x=\frac{11+\sqrt{7}i}{4}\approx 2,75+0,661437828i
x=\frac{-\sqrt{7}i+11}{4}\approx 2,75-0,661437828i
Graf
Aktie
Kopieras till Urklipp
2x^{2}-11x+16=0
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 16}}{2\times 2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 2, b med -11 och c med 16 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\times 16}}{2\times 2}
Kvadrera -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\times 16}}{2\times 2}
Multiplicera -4 med 2.
x=\frac{-\left(-11\right)±\sqrt{121-128}}{2\times 2}
Multiplicera -8 med 16.
x=\frac{-\left(-11\right)±\sqrt{-7}}{2\times 2}
Addera 121 till -128.
x=\frac{-\left(-11\right)±\sqrt{7}i}{2\times 2}
Dra kvadratroten ur -7.
x=\frac{11±\sqrt{7}i}{2\times 2}
Motsatsen till -11 är 11.
x=\frac{11±\sqrt{7}i}{4}
Multiplicera 2 med 2.
x=\frac{11+\sqrt{7}i}{4}
Lös nu ekvationen x=\frac{11±\sqrt{7}i}{4} när ± är plus. Addera 11 till i\sqrt{7}.
x=\frac{-\sqrt{7}i+11}{4}
Lös nu ekvationen x=\frac{11±\sqrt{7}i}{4} när ± är minus. Subtrahera i\sqrt{7} från 11.
x=\frac{11+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+11}{4}
Ekvationen har lösts.
2x^{2}-11x+16=0
Andragradsekvationer som den här kan lösas med hjälp av kvadratkomplettering. För kvadratkomplettering måste ekvationen först skrivas om på formen x^{2}+bx=c.
2x^{2}-11x+16-16=-16
Subtrahera 16 från båda ekvationsled.
2x^{2}-11x=-16
Subtraktion av 16 från sig självt ger 0 som resultat.
\frac{2x^{2}-11x}{2}=-\frac{16}{2}
Dividera båda led med 2.
x^{2}-\frac{11}{2}x=-\frac{16}{2}
Division med 2 tar ut multiplikationen med 2.
x^{2}-\frac{11}{2}x=-8
Dela -16 med 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-8+\left(-\frac{11}{4}\right)^{2}
Dividera -\frac{11}{2}, koefficienten för termen x, med 2 för att få -\frac{11}{4}. Addera sedan kvadraten av -\frac{11}{4} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-8+\frac{121}{16}
Kvadrera -\frac{11}{4} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{7}{16}
Addera -8 till \frac{121}{16}.
\left(x-\frac{11}{4}\right)^{2}=-\frac{7}{16}
Faktorisera x^{2}-\frac{11}{2}x+\frac{121}{16}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{11}{4}=\frac{\sqrt{7}i}{4} x-\frac{11}{4}=-\frac{\sqrt{7}i}{4}
Förenkla.
x=\frac{11+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+11}{4}
Addera \frac{11}{4} till båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}