Beräkna
\frac{2^{x}\left(-\ln(2)x\ln(1-x)+\ln(2)\ln(1-x)-1\right)}{1-x}
Derivera m.a.p. x
\frac{2^{x}\left(\left(\ln(2)x\right)^{2}\ln(1-x)-2\ln(2)^{2}x\ln(1-x)+\ln(2)^{2}\ln(1-x)+2\ln(2)x-2\ln(2)-1\right)}{\left(1-x\right)^{2}}
Aktie
Kopieras till Urklipp
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}