Lös ut v
v=2\pi R^{3}
R\neq 0
Lös ut R
R=\frac{2^{\frac{2}{3}}\sqrt[3]{\frac{v}{\pi }}}{2}
v\neq 0
Aktie
Kopieras till Urklipp
-2v+4\pi RR^{2}=0
Multiplicera båda ekvationsled med R^{2}.
-2v+4\pi R^{3}=0
Om du vill multiplicera potenser för samma bas lägger du till deras exponenter. Addera 1 och 2 för att få 3.
-2v=-4\pi R^{3}
Subtrahera 4\pi R^{3} från båda led. Allt subtraherat från noll blir sin negation.
\frac{-2v}{-2}=-\frac{4\pi R^{3}}{-2}
Dividera båda led med -2.
v=-\frac{4\pi R^{3}}{-2}
Division med -2 tar ut multiplikationen med -2.
v=2\pi R^{3}
Dela -4\pi R^{3} med -2.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}