Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

2x^{2}-5x+2=5
Använd den distributiva egenskapen för att multiplicera 2x-1 med x-2 och slå ihop lika termer.
2x^{2}-5x+2-5=0
Subtrahera 5 från båda led.
2x^{2}-5x-3=0
Subtrahera 5 från 2 för att få -3.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 2, b med -5 och c med -3 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Kvadrera -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Multiplicera -4 med 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Multiplicera -8 med -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Addera 25 till 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Dra kvadratroten ur 49.
x=\frac{5±7}{2\times 2}
Motsatsen till -5 är 5.
x=\frac{5±7}{4}
Multiplicera 2 med 2.
x=\frac{12}{4}
Lös nu ekvationen x=\frac{5±7}{4} när ± är plus. Addera 5 till 7.
x=3
Dela 12 med 4.
x=-\frac{2}{4}
Lös nu ekvationen x=\frac{5±7}{4} när ± är minus. Subtrahera 7 från 5.
x=-\frac{1}{2}
Minska bråktalet \frac{-2}{4} till de lägsta termerna genom att extrahera och eliminera 2.
x=3 x=-\frac{1}{2}
Ekvationen har lösts.
2x^{2}-5x+2=5
Använd den distributiva egenskapen för att multiplicera 2x-1 med x-2 och slå ihop lika termer.
2x^{2}-5x=5-2
Subtrahera 2 från båda led.
2x^{2}-5x=3
Subtrahera 2 från 5 för att få 3.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Dividera båda led med 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
Division med 2 tar ut multiplikationen med 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Dividera -\frac{5}{2}, koefficienten för termen x, med 2 för att få -\frac{5}{4}. Addera sedan kvadraten av -\frac{5}{4} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Kvadrera -\frac{5}{4} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Addera \frac{3}{2} till \frac{25}{16} genom att hitta en gemensam nämnare och sedan addera täljarna. Förkorta sedan bråktalet till lägsta term om det går.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Faktorisera x^{2}-\frac{5}{2}x+\frac{25}{16}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Förenkla.
x=3 x=-\frac{1}{2}
Addera \frac{5}{4} till båda ekvationsled.