Beräkna
\sqrt{5}\approx 2,236067977
Frågesport
Arithmetic
5 problem som liknar:
\frac { \sqrt { 10 } + \sqrt { 15 } } { \sqrt { 2 } + \sqrt { 3 } }
Aktie
Kopieras till Urklipp
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalisera nämnaren i \frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}} genom att multiplicera täljare och nämnare med \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Överväg \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Kvadrera \sqrt{2}. Kvadrera \sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtrahera 3 från 2 för att få -1.
-\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)
Något som delas med -1 ger sin motsats.
-\left(\sqrt{10}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Använd den distributiva egenskapen genom att multiplicera varje term av \sqrt{10}+\sqrt{15} med varje term av \sqrt{2}-\sqrt{3}.
-\left(\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Faktorisera 10=2\times 5. Skriv om kvadratroten av produkt \sqrt{2\times 5} som produkten av fyrkantiga rötter \sqrt{2}\sqrt{5}.
-\left(2\sqrt{5}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Multiplicera \sqrt{2} och \sqrt{2} för att få 2.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Om du vill multiplicera \sqrt{10} och \sqrt{3} multiplicerar du numren under kvadratroten.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{30}-\sqrt{15}\sqrt{3}\right)
Om du vill multiplicera \sqrt{15} och \sqrt{2} multiplicerar du numren under kvadratroten.
-\left(2\sqrt{5}-\sqrt{15}\sqrt{3}\right)
Slå ihop -\sqrt{30} och \sqrt{30} för att få 0.
-\left(2\sqrt{5}-\sqrt{3}\sqrt{5}\sqrt{3}\right)
Faktorisera 15=3\times 5. Skriv om kvadratroten av produkt \sqrt{3\times 5} som produkten av fyrkantiga rötter \sqrt{3}\sqrt{5}.
-\left(2\sqrt{5}-3\sqrt{5}\right)
Multiplicera \sqrt{3} och \sqrt{3} för att få 3.
-\left(-\sqrt{5}\right)
Slå ihop 2\sqrt{5} och -3\sqrt{5} för att få -\sqrt{5}.
\sqrt{5}
Motsatsen till -\sqrt{5} är \sqrt{5}.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}