Gjej p
\left\{\begin{matrix}p=-\frac{x^{3}+3qx+r}{3x^{2}}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }r=0\end{matrix}\right.
Gjej q
\left\{\begin{matrix}q=-px-\frac{x^{2}}{3}-\frac{r}{3x}\text{, }&x\neq 0\\q\in \mathrm{R}\text{, }&x=0\text{ and }r=0\end{matrix}\right.
Share
Kopjuar në clipboard
3px^{2}+3qx+r=-x^{3}
Zbrit x^{3} nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
3px^{2}+r=-x^{3}-3qx
Zbrit 3qx nga të dyja anët.
3px^{2}=-x^{3}-3qx-r
Zbrit r nga të dyja anët.
3x^{2}p=-x^{3}-3qx-r
Ekuacioni është në formën standarde.
\frac{3x^{2}p}{3x^{2}}=\frac{-x^{3}-3qx-r}{3x^{2}}
Pjesëto të dyja anët me 3x^{2}.
p=\frac{-x^{3}-3qx-r}{3x^{2}}
Pjesëtimi me 3x^{2} zhbën shumëzimin me 3x^{2}.
p=-\frac{qx+\frac{r}{3}}{x^{2}}-\frac{x}{3}
Pjesëto -x^{3}-3qx-r me 3x^{2}.
3px^{2}+3qx+r=-x^{3}
Zbrit x^{3} nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
3qx+r=-x^{3}-3px^{2}
Zbrit 3px^{2} nga të dyja anët.
3qx=-x^{3}-3px^{2}-r
Zbrit r nga të dyja anët.
3xq=-x^{3}-3px^{2}-r
Ekuacioni është në formën standarde.
\frac{3xq}{3x}=\frac{-x^{3}-3px^{2}-r}{3x}
Pjesëto të dyja anët me 3x.
q=\frac{-x^{3}-3px^{2}-r}{3x}
Pjesëtimi me 3x zhbën shumëzimin me 3x.
q=-px-\frac{x^{2}}{3}-\frac{r}{3x}
Pjesëto -x^{3}-3px^{2}-r me 3x.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}