Gjej E
\left\{\begin{matrix}E=\frac{\left(\frac{m}{s}\right)^{2}g_{9}k}{5P}\text{, }&s\neq 0\text{ and }P\neq 0\\E\in \mathrm{R}\text{, }&\left(m=0\text{ or }g_{9}=0\text{ or }k=0\right)\text{ and }P=0\text{ and }s\neq 0\end{matrix}\right.
Gjej P
\left\{\begin{matrix}P=\frac{\left(\frac{m}{s}\right)^{2}g_{9}k}{5E}\text{, }&s\neq 0\text{ and }E\neq 0\\P\in \mathrm{R}\text{, }&\left(m=0\text{ or }g_{9}=0\text{ or }k=0\right)\text{ and }E=0\text{ and }s\neq 0\end{matrix}\right.
Share
Kopjuar në clipboard
EPs^{2}=0.5kg_{9}\times 0.8m\times 0.5m
Shumëzo të dyja anët e ekuacionit me s^{2}.
EPs^{2}=0.5kg_{9}\times 0.8m^{2}\times 0.5
Shumëzo m me m për të marrë m^{2}.
EPs^{2}=0.4kg_{9}m^{2}\times 0.5
Shumëzo 0.5 me 0.8 për të marrë 0.4.
EPs^{2}=0.2kg_{9}m^{2}
Shumëzo 0.4 me 0.5 për të marrë 0.2.
Ps^{2}E=\frac{g_{9}km^{2}}{5}
Ekuacioni është në formën standarde.
\frac{Ps^{2}E}{Ps^{2}}=\frac{g_{9}km^{2}}{5Ps^{2}}
Pjesëto të dyja anët me Ps^{2}.
E=\frac{g_{9}km^{2}}{5Ps^{2}}
Pjesëtimi me Ps^{2} zhbën shumëzimin me Ps^{2}.
EPs^{2}=0.5kg_{9}\times 0.8m\times 0.5m
Shumëzo të dyja anët e ekuacionit me s^{2}.
EPs^{2}=0.5kg_{9}\times 0.8m^{2}\times 0.5
Shumëzo m me m për të marrë m^{2}.
EPs^{2}=0.4kg_{9}m^{2}\times 0.5
Shumëzo 0.5 me 0.8 për të marrë 0.4.
EPs^{2}=0.2kg_{9}m^{2}
Shumëzo 0.4 me 0.5 për të marrë 0.2.
Es^{2}P=\frac{g_{9}km^{2}}{5}
Ekuacioni është në formën standarde.
\frac{Es^{2}P}{Es^{2}}=\frac{g_{9}km^{2}}{5Es^{2}}
Pjesëto të dyja anët me Es^{2}.
P=\frac{g_{9}km^{2}}{5Es^{2}}
Pjesëtimi me Es^{2} zhbën shumëzimin me Es^{2}.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}