Kaloni tek përmbajtja kryesore
Faktorizo
Tick mark Image
Vlerëso
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

6x^{2}+4x-24=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-24\right)}}{2\times 6}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-4±\sqrt{16-4\times 6\left(-24\right)}}{2\times 6}
Ngri në fuqi të dytë 4.
x=\frac{-4±\sqrt{16-24\left(-24\right)}}{2\times 6}
Shumëzo -4 herë 6.
x=\frac{-4±\sqrt{16+576}}{2\times 6}
Shumëzo -24 herë -24.
x=\frac{-4±\sqrt{592}}{2\times 6}
Mblidh 16 me 576.
x=\frac{-4±4\sqrt{37}}{2\times 6}
Gjej rrënjën katrore të 592.
x=\frac{-4±4\sqrt{37}}{12}
Shumëzo 2 herë 6.
x=\frac{4\sqrt{37}-4}{12}
Tani zgjidhe ekuacionin x=\frac{-4±4\sqrt{37}}{12} kur ± është plus. Mblidh -4 me 4\sqrt{37}.
x=\frac{\sqrt{37}-1}{3}
Pjesëto -4+4\sqrt{37} me 12.
x=\frac{-4\sqrt{37}-4}{12}
Tani zgjidhe ekuacionin x=\frac{-4±4\sqrt{37}}{12} kur ± është minus. Zbrit 4\sqrt{37} nga -4.
x=\frac{-\sqrt{37}-1}{3}
Pjesëto -4-4\sqrt{37} me 12.
6x^{2}+4x-24=6\left(x-\frac{\sqrt{37}-1}{3}\right)\left(x-\frac{-\sqrt{37}-1}{3}\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso \frac{-1+\sqrt{37}}{3} për x_{1} dhe \frac{-1-\sqrt{37}}{3} për x_{2}.