Gjej y
y=-\frac{\sqrt{10}i}{3}\approx -0-1.054092553i
y=\frac{\sqrt{10}i}{3}\approx 1.054092553i
Share
Kopjuar në clipboard
36y^{2}=-40
Zbrit 40 nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
y^{2}=\frac{-40}{36}
Pjesëto të dyja anët me 36.
y^{2}=-\frac{10}{9}
Thjeshto thyesën \frac{-40}{36} në kufizat më të vogla duke zbritur dhe thjeshtuar 4.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Ekuacioni është zgjidhur tani.
36y^{2}+40=0
Ekuacionet e shkallës së dytë si ky, me një kufizë x^{2}, por pa kufizë x, përsëri mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, pasi të jenë vendosur në formën standarde: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 36\times 40}}{2\times 36}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 36, b me 0 dhe c me 40 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 36\times 40}}{2\times 36}
Ngri në fuqi të dytë 0.
y=\frac{0±\sqrt{-144\times 40}}{2\times 36}
Shumëzo -4 herë 36.
y=\frac{0±\sqrt{-5760}}{2\times 36}
Shumëzo -144 herë 40.
y=\frac{0±24\sqrt{10}i}{2\times 36}
Gjej rrënjën katrore të -5760.
y=\frac{0±24\sqrt{10}i}{72}
Shumëzo 2 herë 36.
y=\frac{\sqrt{10}i}{3}
Tani zgjidhe ekuacionin y=\frac{0±24\sqrt{10}i}{72} kur ± është plus.
y=-\frac{\sqrt{10}i}{3}
Tani zgjidhe ekuacionin y=\frac{0±24\sqrt{10}i}{72} kur ± është minus.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Ekuacioni është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}