Kaloni tek përmbajtja kryesore
Faktorizo
Tick mark Image
Vlerëso
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

a+b=-7 ab=2\left(-15\right)=-30
Faktorizo shprehjen nëpërmjet grupimit. Së pari, shprehja duhet të rishkruhet si 2x^{2}+ax+bx-15. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,-30 2,-15 3,-10 5,-6
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është negative, numri negativ ka vlerë absolute më të madhe se ai pozitiv. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Llogarit shumën për çdo çift.
a=-10 b=3
Zgjidhja është çifti që jep shumën -7.
\left(2x^{2}-10x\right)+\left(3x-15\right)
Rishkruaj 2x^{2}-7x-15 si \left(2x^{2}-10x\right)+\left(3x-15\right).
2x\left(x-5\right)+3\left(x-5\right)
Faktorizo 2x në grupin e parë dhe 3 në të dytin.
\left(x-5\right)\left(2x+3\right)
Faktorizo pjesëtuesin e përbashkët x-5 duke përdorur vetinë e shpërndarjes.
2x^{2}-7x-15=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
Ngri në fuqi të dytë -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-15\right)}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2\times 2}
Shumëzo -8 herë -15.
x=\frac{-\left(-7\right)±\sqrt{169}}{2\times 2}
Mblidh 49 me 120.
x=\frac{-\left(-7\right)±13}{2\times 2}
Gjej rrënjën katrore të 169.
x=\frac{7±13}{2\times 2}
E kundërta e -7 është 7.
x=\frac{7±13}{4}
Shumëzo 2 herë 2.
x=\frac{20}{4}
Tani zgjidhe ekuacionin x=\frac{7±13}{4} kur ± është plus. Mblidh 7 me 13.
x=5
Pjesëto 20 me 4.
x=-\frac{6}{4}
Tani zgjidhe ekuacionin x=\frac{7±13}{4} kur ± është minus. Zbrit 13 nga 7.
x=-\frac{3}{2}
Thjeshto thyesën \frac{-6}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
2x^{2}-7x-15=2\left(x-5\right)\left(x-\left(-\frac{3}{2}\right)\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso 5 për x_{1} dhe -\frac{3}{2} për x_{2}.
2x^{2}-7x-15=2\left(x-5\right)\left(x+\frac{3}{2}\right)
Thjeshto të gjitha shprehjet e formës p-\left(-q\right) në p+q.
2x^{2}-7x-15=2\left(x-5\right)\times \frac{2x+3}{2}
Mblidh \frac{3}{2} me x duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
2x^{2}-7x-15=\left(x-5\right)\left(2x+3\right)
Thjeshto faktorin më të madh të përbashkët 2 në 2 dhe 2.