Kaloni tek përmbajtja kryesore
Gjej x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2x^{2}+3-7x=0
Zbrit 7x nga të dyja anët.
2x^{2}-7x+3=0
Risistemo polinomin për ta vendosur në formën standarde. Renditi kufizat nga fuqia më e madhe tek ajo më e vogël.
a+b=-7 ab=2\times 3=6
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si 2x^{2}+ax+bx+3. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
-1,-6 -2,-3
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është negative, a dhe b janë të dyja negative. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 6.
-1-6=-7 -2-3=-5
Llogarit shumën për çdo çift.
a=-6 b=-1
Zgjidhja është çifti që jep shumën -7.
\left(2x^{2}-6x\right)+\left(-x+3\right)
Rishkruaj 2x^{2}-7x+3 si \left(2x^{2}-6x\right)+\left(-x+3\right).
2x\left(x-3\right)-\left(x-3\right)
Faktorizo 2x në grupin e parë dhe -1 në të dytin.
\left(x-3\right)\left(2x-1\right)
Faktorizo pjesëtuesin e përbashkët x-3 duke përdorur vetinë e shpërndarjes.
x=3 x=\frac{1}{2}
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-3=0 dhe 2x-1=0.
2x^{2}+3-7x=0
Zbrit 7x nga të dyja anët.
2x^{2}-7x+3=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 2, b me -7 dhe c me 3 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
Ngri në fuqi të dytë -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
Shumëzo -8 herë 3.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
Mblidh 49 me -24.
x=\frac{-\left(-7\right)±5}{2\times 2}
Gjej rrënjën katrore të 25.
x=\frac{7±5}{2\times 2}
E kundërta e -7 është 7.
x=\frac{7±5}{4}
Shumëzo 2 herë 2.
x=\frac{12}{4}
Tani zgjidhe ekuacionin x=\frac{7±5}{4} kur ± është plus. Mblidh 7 me 5.
x=3
Pjesëto 12 me 4.
x=\frac{2}{4}
Tani zgjidhe ekuacionin x=\frac{7±5}{4} kur ± është minus. Zbrit 5 nga 7.
x=\frac{1}{2}
Thjeshto thyesën \frac{2}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=3 x=\frac{1}{2}
Ekuacioni është zgjidhur tani.
2x^{2}+3-7x=0
Zbrit 7x nga të dyja anët.
2x^{2}-7x=-3
Zbrit 3 nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
Pjesëto të dyja anët me 2.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
Pjesëtimi me 2 zhbën shumëzimin me 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
Pjesëto -\frac{7}{2}, koeficientin e kufizës x, me 2 për të marrë -\frac{7}{4}. Më pas mblidh katrorin e -\frac{7}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Ngri në fuqi të dytë -\frac{7}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Mblidh -\frac{3}{2} me \frac{49}{16} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
Faktori x^{2}-\frac{7}{2}x+\frac{49}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
Thjeshto.
x=3 x=\frac{1}{2}
Mblidh \frac{7}{4} në të dyja anët e ekuacionit.